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STRONG LAWS FOR WEIGHTED SUMS
OF LID. RANDOM VARIABLES (II)

Soo Hak Sunag

ABSTRACT. Let {X,Xn,n > 1} be a sequence of i.i.d. random
variables and {a,;,1 <7 < n,n > 1} be an array of constants. Let
#(z) be a positive increasing function on (0, co) satisfying ¢(x) T
oo and ¢(Cz) = O(¢(z)) for any C > 0. When EX = 0 and
E[¢(I1X])] < oo, some conditions on ¢ and {a,;} are given under
which 377" | aniX; — 0 as.

1. Introduction

Let {X, X,, n > 1} be a sequence of i.i.d. random variables and
{@ni, 1 <i < n,n > 1} an array of constants. Throughout this paper,
we assume that ¢(r) is a positive increasing function on (0, o) satisfying

(1) #(x) T oo and ¢(Cz) = O(¢(z)), VC > 0.

We also assume that EX = 0 and E[¢(]X])] < oo.

When ¢(z) = zP(p > 1), ¢ satisfies (1). In this case, the a.s. (almost
sure) limiting behavior for the weighted sums Y | a,;X; was studied
by many authors (see, Bai and Cheng [1], Choi and Sung [2], Cuzick {3],
and Li et al. [4]). We recommend the paper of Rosalsky and Sreehari
[5] for more information.

However, when ¢(z) = =" (h > 0,v > 0), ¢ does not satisfy (1). In
this case, the a.s. limiting behavior for the weighted sums was studied
by Bai and Cheng [1], Sung [7], and Wu [§].
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The purpose of this work is to present various conditions on ¢ and
{an;} under which Y7 | an; X; — 0 a.s. Our result extends that of Bai
and Cheng [1], Cuzick [3], and Li et al. [4].

Throughout this paper, C denotes a positive constant which may be
different in various places.

2. Main results

Let 1(z) be the inverse function of ¢(z). Since ¢(x) T oo, it follows
that v(z) 1 co. For easy notation, we let ¢(0) =0 and 9(0) =
To prove our main results, we will need the following lemma.

LEMMA 1. Assume that the inverse function ¥(z) of ¢(z) satisfies
L. 2 S~ L
2 $) 3 5 = O V) 3 ey = O
If E[¢(|X])] < oo, then the followings hold.
() X5, A5 EIXI(X] > (n) < oo,
(i) 3ol g EX(X] < ¢(n)) < oo

Proof. Since 1(z) is increasing function, we have that

e

o0

1
> oy EXI0X) > 9()

(3

3 w_l_ meu (i) < |X| < (i +1))

—

3
—

ST EIX|I((0) < 1X] < v(i+1)) Z%

o)
o0
i=1
o0

1

< N P(p(i) < X < i+ D)(i + 1) Z

i=1 =1 (

< CY_P(i) < |X| <9 + 1))
i=1
< CE[$(|X])] < oco.

So (i) is proved. The proof of (ii) is similar to that of (i) and is omitted.l]

Now, we state and prove one of our main results.
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THEOREM 1. Let {X,X,,n > 1} be a sequence of i.i.d. random
variables with EX = 0 and E[¢(|X]|)] < oo. Assume that the inverse
function ¥(x) of ¢(x) satisfies (2). Let {ani;1 < i < n,n > 1} be an
array of constants such that

(1) maxi<icn |ani] = O(50),
(i) maxi<;<n w2j.(j) Dij al; = O(z%) for some o > 0.

Then Y | 0, X; — 0 as.

Proof. First we prove that

7
(3) Z a,;X; — 0 in probability.

i=1

Define Y, = X,,I(|X,,| < ¢¥(n)) and Y = X,, — Y, for n > 1. Then for
any € >0

P(] Z ani X;| > €)
i=1

< P aw(Y! = BY))| > 5) + P(1 Y an(¥! - EY/)| > 7)
=1

i=1

4 = ! |2 2 -
< B anilY] — EY))P + 2B Y an(Y] ~ EY)")|

C n ) C n
S - E)/l/ + - E ')/;//
gy 2 PV gy 2 B

by (i). From Lemma 1 and the Kronecker lemma, the two terms on the
last expression converge to 0. Thus (3) is proved.

From (3) it follows at once that p(3"7_; an; X;) — 0, where p(Y) is a
median of Y. Hence, by Theorem 3.2.1 in Stout [6], it suffices to prove
that

(4) Z an; X7 — 0 a.s.,

i=1

where {X}} is a symmetrized version of {X,, }. So we need only to prove
the result for {X,} symmetric. Since E[¢(]X])] < oo and ¢(Cz) =
O(¢(x)) for any C > 0, 370 P(|X,| > e¥(n)) < oo for any € > 0.
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Thus it is possible to construct a sequence {b,} of real numbers such
that 0 < b, <1,b, | 0, and

(5) P(|Xn| > bat(n)) < o0

n=1

Define X! = X, I(|X,| < bp¥(n)) and X, = X,, — X, for n > 1. Then
we have by (5) and the Borel-Cantelli lemma that

X <oz X g o

Thus it is enough to show that

n

i=1
From an inequality e* < 1+ x + %w2e|z| for all x € R, we have
Bletn i) < 1+ 1203, BIX eon X
<1+ %t2aiiet|“"i|b“/’(i)EX£2
< exp{%tQaiiet‘“"”biw(i)EXf}

for any ¢t > 0. Let u, = maxXj<i<n |an:|bi90(). Then it follows by (i),
¥(z) T o0, and b, | 0 that u, — 0. From (ii), we obtain that

n

Y anEX{ < Za EX2I(|X| < $(i)) (. by < 1)

i=1

—ZEXz G—1) < |X]| <¢(J))Zam

=7

(7) SZP( (i —1) <|X| <¥(E)Y J)Zanz

<C——ZP G —1) <|X| <9@))i

< c;—aE[qsuxm.
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Now, let € > 0 be given. By putting ¢ = 2logn/e, we have that

P(Z aniX; > 6) < e'-tGE[etZ?:l aniX;]

=1

1 n
<eH exp{§t2e“‘" Z afn-EXf}
i=1
B 2(log n)? - 2
<e 21"g"eXp{—————62 nz”"”;aiiEXé }

< e~2 log n exp{C’(log n)2n——a+2un/e}

< Cn~?

for all sufficiently large n. Hence

iP(i ani X > €) < 00.
n=1 i=1

By the Borel-Cantelli lemma, we have

n
lim sup Zanng <0 as.

n—oo
i=1

By replacing X/ by —X] from the above statement, we obtain

n

. . !

lim nlilgc 5 a,; X; >0 as.
i=1

Thus (6) is proved. O

The following theorem shows that if the variance of X exists, then
the conditions of Theorem 1 can be replaced by more simple conditions.
In particular, the additional coudition (2) on ¢ (and ¢) is not necessary.

THEOREM 2. Let {X,X,,n > 1} be a sequence of ii.d. random
variables with EX = 0,Var(X) < oo, and E[¢(|X|)] < oo. Let {an;, 1 <
i < n,n > 1} be an array of constants such that

(1) maxi<icn |anil = O(5ay);
(i) S a2, = O(zk) for some o > 0.

Then Y i, ,;X; — 0 a.s.
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Proof. We first observe that

n n

E) anXi)? =EX*) a}; —0

i=1 =1

as n — oo. It follows that Y ., a,;X; — 0 in probability. The rest of
the proof is similar to that of Theorem 1 except that (7) is replaced by

n 7 1
Y a2EX]" <EX?) al, <C—.
: : n%
i=1 =1
O

CoROLLARY 1. Let {X,X,,n > 1} be a sequence of ii.d. random
variables satisfying EX = 0 and E|X|P < oo for some p > 1. Let
{ani,1 <i<n,n > 1} be an array of constants such that

(i) maxicicn |an| = O(1/n'/P),

(i) 37, a2 { O(1/n?/P=1+2) for some o > 0, ifl1<p<2,

ii N

=1 O(1/n®) for some a > 0, ifp>2.

Then 50 a,:X; — 0 as.

Proof. When p = 1, the result is the content of Theorem 5 in Choi
and Sung [2]. Let ¢(z) = zP(p > 1). Then ¢~ (z) = ¥(z) = z1/?. When
1 < p < 2, ¢ satisfies (2), and

So the result follows by Theorem 1. When p > 2, the result follows by
Theorem 2. 0

REMARK 1. Li et al. [4] proved Corollary 1 when p > 1.

In some cases, it is not easy to check the condition (ii) of Corollary
1. To solve this problem, we need the following lemma.

LEMMA 2. Let p> 0 and 0 < r < s. Let {an;,1 <i<n,n>1} be
an array of constants satisfying maxi<i<n |an;| = O(1/n!/?). Then the
following statements are equivalent.

(1) 357, |ani|” = O(1/n™/P=1%2) for some a > 0,

(i) o0, |anil® = O(1/n*/P=1+P) for some 3 > 0.
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Proof. The implication (i) = (ii) follows by

n

n
s s—T1 ro__ 1
>l < i onil ™ 3 lanl" = Ol
To prove the converse, we take ¢ > 0 such that # — #(s — r) > 0. Define
A={1<i<n:l|anl < l/nt“/”} and B = {1,--- ,n} \ A. Then we
have by (ii) that

n
D lawil” =3 lanil” + 3 fanil
i=1

i€EA i€B
1 T -7 S
S (o) TS Jan|
i€B
1
= O(nr/p—l—l—min{tr,,@—t(s—r)} )

Thus, the converse is proved. O

From Corollary 1 and Lemma 2, we can obtain the following theorem.

THEOREM 3. Let {X,X,,n > 1} be a sequence of ii.d. random
variables with EX = 0 and E|X|P < oo for some 1 < p < 2. Let
{an:,1 <i<n,n>1} be an array of constants such that

(1) max)<icn lani| = O(1/n'/P),
(i) D0, lans™ = O /n"™/P=1%) for some r > 0 and a > 0.
Then " aniX; — 0 a.s.

REMARK 2. When 1 < p < 2, Corollary 1 follows by Theorem 3 with
r=2.

The following corollary is due to Cuzick [3].

COROLLARY 2. Let {X,X,,,n > 1} be a sequence of i.i.d. random
variables with EX = 0 and E|X|P < oo for some p > 1. Let {ap;,1 <
i <n,n > 1} be an array of constants such that

®) 3 lanil? = O(=1),

where % + é =1. Then 3 an: X; — 0 as.
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Proof. By (8), maxici<n |an:|? = O(1/n9/P), which implies that
max;<i<n |ani] = O(1/n'/?). So when 1 < p < 2, the result follows
by Theorem 3 with r = ¢ and o = 1.

Now let p > 2. Since ¢ < 2, it follows that

T

. 1
D < (U lanit? = Ogp)

g==]1

So the result follows by Corollary 1. g

The following corollary is due to Bai and Cheng (1]

COROLLARY 3. Let1<p<2and}7:§+% for1 <o, < oco. Let
{X,Xn,n > 1} be a sequence of i.i.d. random variables with EX =0
and E|X|? < oo. Let {bn;,1 < i < n,n > 1} be an array of constants
such that

© S [bul” = O().

Then Z?:l bm-Xi/'nl/p — 0 a.s.
Proof. Define an; = bp;/n'/? for 1 < i < n and n > 1. By (9),
maxi<i<n |bni|® = O(n), which implies that

ni/e 1
llélzasxn lam‘ = O(n1/p) = O(n1/@)'

We also have that 377, lan:|* = O(1/n*/?). Thus, when 1 < 8 < 2, the
result follows by Theorem 3.
We now let 3> 2. If a < 2, we have that

2/«

§ 1< n 1
2 ay2/a
;ani < ;L'g/—p(; [bi| ) = O(—575) = 0(55)-

If o > 2, we obtain that

n n

1 1 - 1
E 2 E 2 E 1Y — O ———
Ani nz/p bnz S n2/p (n —~ Ibnll ) (n2/p_1 )‘

=1 i=1

Thus, when 3 > 2, the result follows by Corollary 1. 0



Strong laws for weighted sums of i.i.d. random variables (II) 615

References

[1] Z. D. Bai and P. E. Cheng, Marcinkiewicz strong laws for linear statistics, Statist.
Probab. Lett. 46 (2000}, 105-112.

[2] B. D. Choi and S. H. Sung, Almost sure convergence theorems of weighted sums
of random wariables, Stochastic Anal. Appl. 5 (1987), 365-377.

[3] J. Cuzick, A strong law for weighted sums of i.i.d. random variables, J. Theoret.
Probab. 8 (1995), 625-641.

[4] D. Li, M. B. Rao, T. Jiang, and X. Wang, Complete convergence and almost sure
convergence of weighted sums of random variables, J. Theoret. Probab. 8 (1995
49-76).

[5] A. Rosalsky and M. Sreehari, On the limiting behavior of randomly weighted
partial sums, Statist. Probab. Lett. 40 (1998), 403-410.

[6] W. F. Stout, Almost Sure Convergence, Academic Press, New York, 1974.

{7} S. H. Sung, Strong laws for weighted sums of i.i.d. random wvariables, Statist.
Probab. Lett. 52 (2001), 413-419.

[8] W. B. Wu, On the strong convergence of a weighted sum, Statist. Probab. Lett.
44 (1999), 19-22.

DEPARTMENT OF APPLIED MATHEMATICS, PA1 CHAI UNIVERSITY, TAEJON 302-
735, KOREA
E-mail: sungsh@mail.pcu.ac.kr



