참고문헌
- Michigan Math. J. v.13 Weyl's theorem for nonnormal operators L. A. Coburn https://doi.org/10.1307/mmj/1031732778
- Theory of generalized spectral operators I. Colojoara;C. Foias
- Linear operators, part Ⅲ; spectral operators N. Dunord;J. T. Schwartz
- Proc. Amer. Math. Soc. v.128 Weyl's theorem holds for algebraically hyponormal operators Y. M. Han;W. Y. Lee https://doi.org/10.1090/S0002-9939-00-05741-5
- Invertibility and Singularity for Bounded Linear Operators R. E. Harte
- Trans. Amer. Math. Soc. v.349 Another note on Weyl's theorem R. E. Harte;W. Y. Lee https://doi.org/10.1090/S0002-9947-97-01881-3
- Functional Analysis H. G. Heuser
- Pacific J. Math. v.157 Operators with finite ascent K. B. Laursen
- Proc. Amer. Math. Soc. v.125 Essential sectra through local spectral theory https://doi.org/10.1090/S0002-9939-97-03852-5
- Bull. Amer. Math. Soc. v.74 Characterizations of the essectial spectrum of F. E. Browder D. Lay https://doi.org/10.1090/S0002-9904-1968-11905-6
- Glasgow Math. J. v.38 no.1 A spectral mapping theorem for the Weyl spectrum W. Y. Lee;S. H. Lee https://doi.org/10.1017/S0017089500031268
- Illinois J. Math. v.21 On the Weyl spectrum (Ⅱ) K. K. Oberai
피인용 문헌
- Weyl type theorems for operators satisfying the single-valued extension property vol.326, pp.2, 2007, https://doi.org/10.1016/j.jmaa.2006.03.085