DOI QR코드

DOI QR Code

ON WEYL SPECTRA OF ALGEBRAICALLY TOTALLY-PARANORMAL OPERATORS

  • Kim, Jin-Chun (Department of Computer Aided Mathematical Informations Science, Semyung University)
  • 발행 : 2002.11.01

초록

In this paper we show that Weyl's theorem holds for f(T) when an Hilbert space operator T is “algebraically totally-paranormal” and f is any analytic function on an open neighbor-hood of the spectrum of T.

키워드

참고문헌

  1. Michigan Math. J. v.13 Weyl's theorem for nonnormal operators L. A. Coburn https://doi.org/10.1307/mmj/1031732778
  2. Theory of generalized spectral operators I. Colojoara;C. Foias
  3. Linear operators, part Ⅲ; spectral operators N. Dunord;J. T. Schwartz
  4. Proc. Amer. Math. Soc. v.128 Weyl's theorem holds for algebraically hyponormal operators Y. M. Han;W. Y. Lee https://doi.org/10.1090/S0002-9939-00-05741-5
  5. Invertibility and Singularity for Bounded Linear Operators R. E. Harte
  6. Trans. Amer. Math. Soc. v.349 Another note on Weyl's theorem R. E. Harte;W. Y. Lee https://doi.org/10.1090/S0002-9947-97-01881-3
  7. Functional Analysis H. G. Heuser
  8. Pacific J. Math. v.157 Operators with finite ascent K. B. Laursen
  9. Proc. Amer. Math. Soc. v.125 Essential sectra through local spectral theory https://doi.org/10.1090/S0002-9939-97-03852-5
  10. Bull. Amer. Math. Soc. v.74 Characterizations of the essectial spectrum of F. E. Browder D. Lay https://doi.org/10.1090/S0002-9904-1968-11905-6
  11. Glasgow Math. J. v.38 no.1 A spectral mapping theorem for the Weyl spectrum W. Y. Lee;S. H. Lee https://doi.org/10.1017/S0017089500031268
  12. Illinois J. Math. v.21 On the Weyl spectrum (Ⅱ) K. K. Oberai

피인용 문헌

  1. Weyl type theorems for operators satisfying the single-valued extension property vol.326, pp.2, 2007, https://doi.org/10.1016/j.jmaa.2006.03.085