DOI QR코드

DOI QR Code

Antimicrobial Activity of Silver Ion against Salmonella typhimurium, Staphylococcus aureus and Vibrio parahaemolyticus

Salmonella typhimurium, Staphylococcus aureus, Vibrio parahaemolyticus에 대한 은 이온의 항균효과

  • 김현진 (경남대학교 생명과학부 식품생물공학전공) ;
  • 이승철 (경남대학교 생명과학부 식품생물공학전공)
  • Published : 2002.12.01

Abstract

Antimicrobial activity of silver ion was tested against 3 kinds of food-borne microorganisms-Salmonella typhimurium, Staphylococcus aureus and Vibrio parahaemolyticus-using paper disk and broth medium methods. In paper disk method, silver ion showed antimicrobial activity against S. typhimurium and V. parahaemolyticus at the concentration above 2 ppm and 10 ppm, respectively, where as it was not detected in S. aureus with 20 ppm of silver ion concentration. In broth medium, the growth of S. typhimurium and V. Porahaemolyticus could be retarded at 0.3 ppm and 0.5 ppm of silver ion concentration respectively. In the presence of 1.0 ppm of silver ion, the growth of S. typhimurium was inhibited completely. In S. aureus, the growth was retarded at 5 ppm and was inhibited at l5 ppm completely.

식중독 미생물 Salmonella typhimurium ATCC 14028, Staphylococcus aureus KCTC 2199, Vibrio parahaemolyticus ATCC 17802에 대한 은 이온의 항균력을 PAper Disk 방법과 액체 배양법에서 조사하였다. S. typhimurium와 V. parahaemolyticus의 경우 각각 2,10ppm의 은 이온 농도에서 생육저해환이 발견되었으며 농도가 증가함에 따라 생육 저해의 정도가 증가하였다. 그러나 S.aureus는 20 ppm의 은 이온 농도에서도 생육 저해환이 관찰되지 않았다. 액체 배양에서 은 이온의 항균 능력은 S. typhimurium, V.parahaemolyticus, S.aureus에 대해서 각각 03 ppm, 0.5 ppm, 5 ppm 이상에서 관찰되었고, 은 이온의 농도가 증가함에 따라 생육 저해는 크게 나타났다.

Keywords

References

  1. Thurman RB, Gerba CP. 1989. The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. CRC Crit Rev Environ Control 18: 295-315. https://doi.org/10.1080/10643388909388351
  2. Eiji H. 1991. Control for environmental situation. J Antibact Antifung Agents 19: 523-531.
  3. Hendry AT, Stewart IO. 1979. Silver-resistant enterobacteriaceae from hospital patients. Can J Microbiol 25: 915-921. https://doi.org/10.1139/m79-136
  4. Kramer SJ, Spadaro JA, Webster DA. 1981. Antibacterial and osteoinductive properties of demineralized bone matrix treated with silver. Clin Orthop 161: 154-162.
  5. Barranco SD, Spadaro FA, Berger TJ, Becker RO. 1974. In vitro effect of weak direct current on Staphylococcus aureus. Clin Ortho 100: 250-255.
  6. Berger TJ, Spadaro JA, Bierman SE, Richard SE, Chapin SE, Becker RO. 1976. Antifungal properties of electrically generated metallic ions. Antimicrob Agents Chemother 10: 856-860. https://doi.org/10.1128/AAC.10.5.856
  7. Berger TJ, Spadaro JA, Chapin SE, Becker RO. 1976. Electrically generated silver ions. Quantitative effects of bacterial and mammalian cells. Antimicrob Agents Chemother 9: 357-358. https://doi.org/10.1128/AAC.9.2.357
  8. Stefano B, Jean HU, Ralph BD, Robert JS. 2001. Prolonged antimicrobial activity of a catheter containing chlorhexidinesilver sulfadiazine extends protection agaginst catheter infections in vivo. Antimicrob Agents Chemother 45: 1535-1538. https://doi.org/10.1128/AAC.45.5.1535-1538.2001
  9. Antonio M, Andrea S, Claudiu TS. 2000. Antifungal activity of silver and zinc complexes of sulfadrug derivatives incorporating arylsulfonylureido moieties. Eur J Pharm Sci 11: 99-107. https://doi.org/10.1016/S0928-0987(00)00093-2
  10. Wright JB, Lam K, Hansen D, Burrell RE. 1999. Efficacy of topical silver against fungal burn wound pathogens. Am J Infect 27: 344-350. https://doi.org/10.1016/S0196-6553(99)70055-6
  11. Marone P, Monzillo V, Perversi L, Carretto E. 1998. Comparative in vitro activity of silver sulfadiazine, alone and in combination with cerium nitrate, against staphylococci and gram-negative bacteria. J Chemother 10: 17-21. https://doi.org/10.1179/joc.1998.10.1.17
  12. Singer AJ, Berrutti L, McClain SA. 1999. Comparative trial of octyl-cyanoacrylate and silver sulfadiazine for the treatment of full thickness skin wounds. Wound Repair Regen 7: 356-361. https://doi.org/10.1046/j.1524-475X.1999.00356.x
  13. Hardt-English P, York G, Stier R, Cocotas P. 1990. Staphylococcal food poisoning outbreaks caused by canned mushrooms from China. Food Technol 44: 74-76.
  14. Korsak N, Daube G, Ghafir Y, Chahed A, Jolly S, Vindevogel H. 1998. An efficient sampling technique used to detect four foodborne pathogens on pork and beef carcasses in nine Belgian abattoirs. J Food Prot 61: 534-541.
  15. Heintz ML, Hohnson JM. 1998. The incidence of Listeria spp., Salmonella spp., and Clostridium botulinum in smoked fish and shellfish. J Food Prot 61: 318-323. https://doi.org/10.4315/0362-028X-61.3.318
  16. Peter MM. 1996. Bacteriocins for control of Listeria spp. in food. J Food Prot Supplement: 54-63.
  17. Ishi E. 1992. Current topics of bacterial food-borne and water-borne diseases. Seikatsu Eisei 36: 197-207.
  18. Davidson PM, Parish ME. 1989. Methods for testing the efficiency of food antimicrobials. Food Technol 43: 148-154.
  19. Kenji N, Satoshi T, Ryusuke N, Satomi N, Toshio T, Munehiro O. 2000. Synthesis and characterization of watersoluble silver (I) complexes with L-histidine and (S)-(-)-2-pyrrolidone-5-carboxylic acid showing a wide spectrum of effective antibacterial and antifungal activities. Crystal structures of chiral helical polymers $[Ag(Hhis)]_n$ and ${[Ag(Hpyrrld)]_2}_n$ in the solid state. Inorg Chem 39: 3301-3311. https://doi.org/10.1021/ic990526o
  20. Shin CH, Jung SH, Park DK. 1997. Effect of inorganic antimicrobial agents exchanged with silver ion on the respiration rate of activated sludge. J Korean Soc Environ Engineers 19: 177-185.
  21. Spadaro JA, Becker RO, Bachman CH. 1970. Size specific metal complexing sites in native collagen. Nature 225: 1134-1136. https://doi.org/10.1038/2251134a0
  22. Webster DA, Spadaro JA, Becker RO, Kramer SJ. 1981. Silver anode treatment of chronic osteomyelitis. Clin Orthop 161: 105-114.
  23. Lund E. 1963. The significance of oxidation in chemical inactivation of poliovirus. Arch Ges Virusforsch 12: 648-660. https://doi.org/10.1007/BF01246386

Cited by

  1. Overview of Active Polymer-Based Packaging Technologies for Food Applications vol.20, pp.4, 2004, https://doi.org/10.1081/FRI-200033462
  2. Combined treatment with silver ions and organic acid enhances growth-inhibition of Escherichia coli O157:H7 vol.18, pp.10, 2007, https://doi.org/10.1016/j.foodcont.2006.07.024
  3. 미량원소 강화 식품소재의 항균효과 vol.35, pp.1, 2006, https://doi.org/10.3746/jkfn.2006.35.1.035
  4. 식중독 세균에 대한 구아바 부위별 추출물의 항균 특성 vol.38, pp.12, 2002, https://doi.org/10.3746/jkfn.2009.38.12.1773