DOI QR코드

DOI QR Code

Short Term Effects of Sodium Intakes on Serum Lipids and Glucose in Adult Women

단기간의 나트륨 섭취수준이 정상 성인 여성의 혈청 지질과 혈당에 미치는 영향

  • 이영근 (수원여자대학 식품과학과) ;
  • 승정자 (숙명여자대학교 식품영양학과) ;
  • 최미경 (청운대학교 식품영양학과) ;
  • 이윤신 (수원여자대학 식품과학과)
  • Published : 2002.12.01

Abstract

This study was conducted to investigate the effect of sodium intake on serum lipids and glucose. 20 young adult women were fed the diets containing 290.5 mEq (high-Na diet) and 51.3 mEq (low-Na diets) Na for 6 days, respectively. Serum lipids, glucose, and other parameters after high-Na diet and low-Na diet were compared. The results would be summarized as follows. The mean age, body weight, height, and blood pressure of the subjects were 22.9$\pm$2.5 years,54.7+6.6 kg, 160.0$\pm$4.8 cm, 110.3$\pm$7.7/67.5$\pm$19.7 mmHg, respectively. Body weight, BMI, and diastolic blood pressure were significantly higher at the end of high-Na diet than of low-Na diet (p<0.001 p<0.001, p<0.05). However, there were not significantly different in height and systolic blood pressure between high- and low-Na diet. Serum cholesterol, LDL-cholesterol, and HDL-cholesterol were not significantly different with Na intakes. Serum triglyceride was significantly higher at the end of high-Na diet than of low- Na diet (p<0.05) Serum apo A-I was significantly decreased in low-Na diet, while apo B was increased (p<0.001, p<0.001). Thrombin time and prothrombin time, blood aggregation time were significantly faster following low-Na diet (p<0.001, p<0.05). There was not significantly different in serum glucose between high- and low-Na diet. However, serum insulin was significantly higher following low-Na diet (p<0.01). It is concluded that diastolic blood pressure, serum triglyceride, serum apo A-I, blood aggregation time were decreased in low-Na diet, while serum apo B and serum insulin were increased. These results suggest that Na-restricted diet affects not only blood Pressure but other biochemical parameters in blood. Therefore, for the patients who need restricted Na diet, it would be suggested that various biochemical changes should be carefully considered along with dietary Na manipulation.

본 연구는 나트륨 섭취수준이 혈중 지질과 혈당에 미치는 영향을 규명해보기 위하여 정상 성인 여성 20명을 대상으로 고나트륨식과 저나트륨식을 각각 6일씩 공급한 후 혈중 지질, 혈당 및 기타 혈액성상의 변화를 비교분석하였다. 그 결과를 요약하면 다음과 같다. 연구대상자들의 평균연령은 22.9$\pm$2.5세였으며 평균 체중과 신장은 54.7$\pm$6.6kg과 160.0$\pm$4.8cm였고 수축기/이완기 혈압은 110.3$\pm$7.7/67.5$\pm$9.7 mm Hg로 정상범위에 속하였다. 나트륨 섭치수준에 따른 평균 체중의 변화는 고나트륨식이 54.7$\pm$6.4 kg으로 저나트륨식의 53.8$\pm$6.2 kg보다 유의하게 높았다(p<0.001). 평균 신장은 고나트륨식과 저나트륨식간에 유의한 차이가 없었으나, 이완기혈압은 고나트륨식(65.5$\pm$8.3 mmHg)보다 저나트륨식(60.8$\pm$8.6 mmHg) 이후 유의하게 감소하였다(p<0.05). 혈청 콜레스테롤,LDL-콜레스테롤,HDL-콜레스테롤 함량은 나트륨 섭취 수준에 따라 유의적인 차이를 보이지 않았으나 중성지질은 고나트륨식의 89.4$\pm$27.3 mg/dL보다 저나트륨식이시 73.8$\pm$12.5mg/dL로 유의하게 감소하였다(p<0.05). 혈청 아포 A-I은 고나트륨식의 183.7$\pm$32.7 mg/dL보다 저나트륨식에서 167.5$\pm$22.8 mg/dL로 유의적으로 감소하였으나(p<0.001), 아포 B는 고나트륨식의 83.3$\pm$13.9 mg/dL보다 저나트륨식에서 90.8$\pm$12.9 mg/dL로 유의하게 증가하였다(p<0.001). 아포 A-I/B는 저나트륨식이 1.9$\pm$0.2로 2.2$\pm$0.3을 보인 고나트륨식보다 유의하게 낮았으나(p<0.001),AI(atherogenic index)는 나트륨 섭취수준에 의한 영향을 받지 않았다 혈액 응고시간으로 thrombin time과 Prothrombin time은 저나트륨식이 각각 9.6$\pm$1.1초, 11.6$\pm$0.7초로 나타나 고나트륨식의 11.3$\pm$1.3초, 12.0$\pm$0.4초보다 유의하게 빠른 것으로 나타났다(p<0.001, p<0.05). 나트륨 섭취수준에 따른 혈당 농도는 고나트륨식과 저나트륨식 간에 유의한 차이가 없었으나, 인슐린 함량은 저나트륨식이 10.3$\pm$5.0 $\mu$IU/mL로 고나트륨식의 6.0$\pm$2.6$\mu$IU/mL보다 유의하게 높았다.(P<0.01). 이상의 결과를 종합할 때 저나트륨식에서 이완기 혈압, 혈청 중성지질, 아포A-1, 혈액 응고시간은 감소되었으나, 혈청 아포 B와 인슐린함량은 유의하게 증가되어 지속적인 저나트륨식 처방시 지질과 당질대사의 변화를 초래할 가능성이 있는 것으로 보여진다. 따라서 혈압 저하를 목적으로 하는 나트륨 제한식의 실시는 다양한 체내의 생화학적 변화를 고려해서 이루어져야 할 것이며, 앞으로 이에 대한 보다 다각적인 연구가 요구된다.

Keywords

References

  1. National Statistical Office. 1999. Korea statistical yearbook. Republic of Korea.
  2. Sewell JL, Malasky BR, Gedney CL, Gerber TM, Brody EA, Pacheco EA, Yost D, Masden BR, Galloway JM. 2002. The increasing incidence of coronary artery disease and cardiovascular risk factors among a Southwest Native American tribe: the White Mountain Apache Heart Study. Arch Intern Med 162: 1368-1372. https://doi.org/10.1001/archinte.162.12.1368
  3. Ambard L, Beaujard E. 1904. Causes de hypertension arterielle. Arch Gen Med 1: 520-533.
  4. Dahl LK. 1972. Salt and hypertension. Am J Clin Nutr 25: 231-244. https://doi.org/10.1093/ajcn/25.2.231
  5. Blackwood AM, Sagnella GA, Cook DG, Cappuccio FP. 2001. Urinary calcium excretion, sodium intake and blood pressure in multi-ethnic population: results of the Wandsworth Heart and Stroke Study. J Hum Hypertens 15: 229-237. https://doi.org/10.1038/sj.jhh.1001171
  6. Cirillo M, Lombardi C, Laurenzi M, De Santo NG. 2002. Relation of urinary urea to blood pressure: interaction with urinary sodium. J Hum Hypertens 16: 205-212. https://doi.org/10.1038/sj.jhh.1001323
  7. Tobian L. 1991. Salt and hypertension. Lessons from animal models that relate to human hypertension. Hypertension 17: 152-158.
  8. Ledingham JM. 1991. Sodium retention and volume expansion as mechanisms. Am J Hypertens 4: 534S-540S. https://doi.org/10.1093/ajh/4.10.534S
  9. Takeda Y, Yoneda T, Demura M, Furukawa K, Miyamori I, Mabuchi H. 2001. Effects of high sodium intake on cardiovascular aldosterone synthesis in stroke-prone spontaneously hypertensive rats. J Hypertens 19: 635-639. https://doi.org/10.1097/00004872-200103001-00017
  10. Ruppert M, Diehl J, Kolloch R, Overlack A, Kraft K, Gobel B, Hitte N, Stumpe KO. 1991. Short-term dietaty sodium restriction increases serum lipids and insulin in salt-sensitive and salt-resistant normotensive adults. Klin Wonchenschr 69: 51-57. https://doi.org/10.1007/BF01649060
  11. Weder AB, Egan BM. 1991. Potential deleterious impact of dietary salt restriction on cardiovascular risk factors. Klin Wochenschr 69: 45-50. https://doi.org/10.1007/BF01649057
  12. Sharma AM, Arntz HR, Kribben A, Schatternfroh S, Distler A. 1990. Dietary sodium restriction: adverse effect on plasma lipids. Klin Wochenschr 68: 664-668. https://doi.org/10.1007/BF01667013
  13. Lopez-Candales A. 2001. Metabolic syndrome X: a comprehensive review of the pathophysiology and recommended therapy. J Med 32: 283-300.
  14. The Korean Nutrition Society. 2000. Recommended dietary allowances for Koreans. Seoul, Korea.
  15. National Rural Living Science Institute, RDA. 1996. Food composition tables. Sanglogsa, Seoul, Korea.
  16. Allain CC, Poon LS, Chan CSG, Richmond W, Fu PC. 1974. Enzymatic determination of total serum cholesterol. Clin Chem 20: 470-475.
  17. Warnick GR, Benderson J, Albers JJ. 1982. Dextran sulfate $Mg^2$ percipitation precedure for quantitation of high density lipoprotein cholesterol. Clin Chem 28: 1379-1388.
  18. Friedewald WT, Levy RI, Fredrickson DS. 1972. Estimation of concentration of low-density lipoprotein cholesterol on plasma without use of the preparative ultracentrifuge. Clin Chem 18: 499-502.
  19. Rifai N, King ME. 1986. Immunoturbidimetric assays of apoproteins A A-I, A-II, and B in serum. Clin Chem 32: 957-961.
  20. Trinder P. 1969. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem 6: 24-27. https://doi.org/10.1177/000456326900600108
  21. Turkington RW, Estkowski A, Link M. 1982. Secretion of insulin or connecting peptide: a predictor of insulin dependence of obese diabetics. Arch Intern Med 142: 1102-1105. https://doi.org/10.1001/archinte.142.6.1102
  22. International Obesity Task Force. 1999. Reassessment of anthropometric indices of obesity. Asian BMI/obesity workshop meeting. Milano, Italy.
  23. Dahl LK. 1969. Salt and blood pressure. Lancet 22: 622-623.
  24. Boero R, Pignataro A, Bancale E, Campo A, Morelli E, Nigra M, Novarese M, Possamai D, Prodi E, Quarello F. 2000. Metabolic effects of changes in dietary sodium intake patients with essential hypertension. Minerva Urol Nefrol 52: 13-16.
  25. Maldonado-Martin A, Garcia-Matarin L, Gil-Extremera B, Aviva-Oyonarte C, Garcia-Granados ME, Gil-Garcia F, Latorre-Hernandez J, Miro-Gutierrez J, Soria-Bonilla A, Vergara-Martin J, Javier-Martinez MR. 2002. Blood pressure and urinary excretion of electrolytes in Spanish schoolchildren. J Hum Hypertens 16: 473-478. https://doi.org/10.1038/sj.jhh.1001424
  26. Alberto A, Rimm EB, Giovannucci EL, Colditz GA, Willett WC, Stampfer MJ. 1992. A prospective study of nutritional factors and hypertension among US men. Circulation 86: 1475-1484. https://doi.org/10.1161/01.CIR.86.5.1475
  27. Cheung BM, Ho SP, Cheung AH, Lau CP. 2000. Diastolic blood pressure is related to urinary sodium excretion in hypertensive Chinese patients. QJM 93: 557-558. https://doi.org/10.1093/qjmed/93.8.557
  28. Schaefer EJ. 2002. Lipoproteins, nutrition, and heart disease. Am J Clin Nutr 75: 191-212. https://doi.org/10.1093/ajcn/75.2.191
  29. Valles V, Aguilar-Salinas CA, Gomez-Perez FJ, Rojas R, Franco A, Olaiz G, Rull JA, Sepulveda J. 2002. Apolipoprotein B and A-I distribution in Mexican urban adults: results of a nationwide survey. Metabolism 51: 560-568. https://doi.org/10.1053/meta.2002.31977
  30. Wilcken DEL, Wang XL, Greenwood J, Lynch J. 1993. Lipoprotein(a) and apolipoprotein B and A1 in children and coronary vascular events in their grandparents. J Pediatr 123: 519-526. https://doi.org/10.1016/S0022-3476(05)80944-8
  31. Lapointe JY, Gagnon M, Poirier S, Bissonnette P. 2002. The presence of local osmotic gradients can account for the water flux driven by the Na+-glucose cotransporter. J Physiol 542: 61-62. https://doi.org/10.1113/jphysiol.2002.013328
  32. Miura K, Nakagawa H, Nishijo M, Tabata M, Morikawa Y, Senma M, Yoshita K, Ishizaki M, Kawano S. 1995. Plasma insulin and blood pressure in normotensive Japanese men with normal glucose tolerance. J Hypertension 13: 427-432.
  33. Kanoun F, Ben Amor Z, Zouari B, Ben Khalifa F. 2001. Insulin therapy may increase blood pressure levels in type 2 diabetes mellitus. Diabetes Metab 27: 695-700.

Cited by

  1. The Effect of Sodium Reduction Education Program of a Public Health Center on the Blood Pressure, Blood Biochemical Profile and Sodium Intake of Hypertensive Adults vol.17, pp.6, 2012, https://doi.org/10.5720/kjcn.2012.17.6.752