A High Speed FFT Processor for OFDM Systems

OFDM 시스템을 위한 고속 FFT 프로세서

  • 조병각 (국방과학연구소) ;
  • 손병수 (아주대학교 공과대학 전자공학부) ;
  • 선우명훈 (아주대학교 공과대학 전자공학부)
  • Published : 2002.12.01

Abstract

This paper proposes a high-speed FFT processor for orthogonal frequency-division multiplexing(OFDM) systems. The Proposed architecture uses a single-memory architecture and uses a radix-4 algorithm for high speed. The proposed memory is partitioned into four banks for high-speed computation. It uses an in-place memory strategy that stores butterfly outputs in the same memory location used by butterfly inputs. Therefore, the memory size can be reduced. The SQNR of about 80dB is achieved with 20-bit input and 20-bit twiddle factors. The architecture has been modeled by VHDL and logic synthesis has been performed using the SamsungTM 0.5㎛ SOG cell library (KG80). The implemented FFT processor consists of 98,326 gates excluding memory. It has smaller hardware than existing pipeline FFT processors for more than 1024-point FFTs. The processor can operate at 42MHz and calculate a 256-point complex FFT in 6us. It satisfies tile required processing speed of 8.4㎲ in the HomePlug standard.

본 논문에서는 고속 데이터 전송을 위한 OFDM(Orthogonal Frequency Division Multiplex) 시스템용 고속 FFT 프로세서를 제안한다 제안된 구조는 단일 메모리 구조를 채택하였으며 고속 연산을 위해 Radix-4 알고리즘과 메모리 뱅크 구조를 사용하였다. 또한, 버터플라이 출력이 입력 데이터의 위치에 저장되는 In-place 메모리 구조를 사용하여 메모리의 크기를 줄였다. 설계한 프로세서는 내부 데이터와 회전인자는 각 각 20 비트로 설계되었으며, 약 80dB의 SQNR 성능을 갖는다. 그리고 VHDL로 모델링한 후 삼성 0.5㎛ SOG 공정으로 합성하여 메모리를 제외한 전체 게이트 수가 98,325개를 보였으며 제안된 구조는 1,024-포인트부터는 기존의 파이프라인 구조보다 하드웨어 측면에서 이득을 가진다. 동작속도는 42MHz로 256-포인트 연산이 6㎲에 처리 가능한 구조로 HomePlug 표준안의 8.4㎲의 처리속도를 만족시킨다.

Keywords

References

  1. C. L. Wang and C. H. Chang, 'A novel DHT-based FFT/IFFT processor for ADSL transceivers,' in Proc. IEEE Int. Symp. Circuits Syst., 1999, pp. 51-54 https://doi.org/10.1109/ISCAS.1999.777803
  2. J. R. Choi, S. B. Park, D. S. Han, and S. H. Park, 'A 2048 complex point FFT architecture for digital audio broadcasting system,' in Proc. IEEE Int. Symp. Circuits Syst., 2000, vol. V, pp. 693-696 https://doi.org/10.1109/ISCAS.2000.857580
  3. VDSL Alliance, VDSL Alliance Draft Standard Proposal, April 1999
  4. HomePlug Powerline Alliance, HomePlug 0.5 Draft Medium Interface Specification, Nov. 2000
  5. B. M. Bass, 'A low power, high performance, 1024-point FFT processor, IEEE J. Solid-State Circuits,' vol. 34, pp. 380-387, Mar. 1999 https://doi.org/10.1109/4.748190
  6. H. F. Lo, M. D. Shieh, and C. M. Wu, 'Design of an effcient FFT processor for DAB systems,' in Proc. IEEE Int. Symp. Circuits Syst., 2001, pp. 654-657 https://doi.org/10.1109/ISCAS.2001.922322
  7. L. jia, Y. Gao, and H. Tenhunen, 'A pipelined shared-memory architecture for FFT processor,' in Proc. IEEE 42nd Midwest Symp. Circuits Syst., 1999, pp. 804-807 https://doi.org/10.1109/MWSCAS.1999.867757
  8. B. S. Son, B. G. Jo, M. H. Sunwoo, and Y. S.Kim, 'A high-speed FFT processor for OFDM system,' to appear in Proc. IEEE Int. Symp. Circuits Syst., 2002 https://doi.org/10.1109/ISCAS.2002.1010215
  9. L. G. Johnson, 'Conflict free memory addressing for dedicated FFT hardware,' IEEE Trans. Circuits Syst. II, vol. 39, pp. 312-316, May 1992 https://doi.org/10.1109/82.142032
  10. 김재석, 조용수, 조중휘, 이동통신용 모뎀의 VLSI설계, 대영사, 2001
  11. S. He and M. Torkelson, 'Design and implementation of a 1024-point pipeline FFT processor,' in Proc. IEEE Custom Integrated Circuits Conf., 1998, pp. 131-135 https://doi.org/10.1109/CICC.1998.694922
  12. J. A. Hidalgo, J. Lopez, F. Aruguello and E. L. Zapata, 'Area-efficient architecture for fast Fourier transform,' IEEE Trans. Circuits Syst.-II., vol. 46, pp. 187-193 https://doi.org/10.1109/82.752951
  13. M. K. Rudberg, and M. Sandberg, and K. Ekholm, 'Design and implementation of an FFT processor for VDSL,' in Proc. Asia-Pacific Conf. Circuits Syst., 1998, pp. 611-614 https://doi.org/10.1109/APCCAS.1998.743894
  14. K. W. Park, S. H. Park, and Y. S. Cho, 'An OFDM transmission scheme using cyclic suffix,' IEICE Trans. Commun., vol. E84-B, pp. 1100-1103, Apr. 2001
  15. ETSI Technical Specification, Transmission and Multiplexing (TM);Access Transmission Systems on Metallic Access Cables; Very high speed Digital Subscriber Line (VDSL); Part 2: Transceiver Specification, Feb. 2001
  16. N. Weste and D. J. Skellern, 'VLSI for OFDM,' IEEE Commun. Mag., pp.127-131., Oct. 1998 https://doi.org/10.1109/35.722148
  17. IEEE Commun. Mag. VLSI for OFDM N.Weste;D.J.Skellern