Numerical Prediction of Spray Combustion and Film Cooling in a Liquid Rocket Engine

액체로켓 엔진의 분무연소 및 막냉각에 대한 수치해석

  • 박태선 (한국항공우주연구원 로켓엔진연구그룹) ;
  • 류철성 (한국항공우주연구원 로켓엔진연구그룹)
  • Published : 2002.06.01

Abstract

For turbulent spray combustion flows a coupled numerical procedure was developed, This method was discretized by using generalized curvilinear coordinates to handle complex geometries. The preconditioning and eigenvalue rescaling techniques were employed to provide efficient convergences over a wide range of subsonic Mach numbers. The accuracy was validated by simulating the laminar cavity flow. The film cooling effect of a liquid rocket engine (KSR-III) were investigated by a spray combustion analysis. The film cooling showed a negative effect on the combustion efficiency. In the combustion chamber wall, the film cooling effect was revealed to be promoted by the production of fuel rich zone.

난류분무 연소해석을 위한 수치해석 코드가 개발되었다. 복잡한 형상을 다루기 위하여 일반좌표계에서 이산화되었고 낮은 마하수 유동에 대한 수렴성을 증가시키기 위하여 예조건화기법과 고유치 재규격화기법이 도입되었다. 코트의 정확성은 캐비티 유동과 평면노즐에서 검증되었다. 액체로켓 엔진의 막냉각효과가 분무연소해석에 의하여 분석되었다. 막냉각은 연소효율에 부정적인 영향을 보였다. 연소실 벽면에서 막냉각효과는 연료가 많은 지역형성에 증진됨을 보여주었다.

Keywords

References

  1. K. H. Chen and J. S. Shuen, 'Three-Dimensional Coupled Implicit Methods for Spray Combustion Flows at All Speeds,' AIAA 94-3047, 1994
  2. 고현, 윤웅섭, '예조건화 알고리즘에 의한 저마하수 유동장 해석기법,' 전산유체공학회 춘계학술대회 논문집, 1998, pp. 35-42
  3. K. K. Kuo, Principles of Combustion, Wiley and Sons, 1976
  4. S. K. Lele, 'Compact Finite Difference Schemes with Spectral-like Resolution,' J Computational Phys., Vol. 103, 1992, pp.16-42 https://doi.org/10.1016/0021-9991(92)90324-R
  5. E. Turkel, 'Preconditioned Methods for Solving the Incompressible and Low Speed Compressible Equation,' Journal of Computational Phys., Vol. 72, 1987, pp.277-298 https://doi.org/10.1016/0021-9991(87)90084-2
  6. T. S. Park and H. J. Sung, 'A New Low-Reynolds-Number $\kappa$$\varepsilon$f_u Model for Predictions Involving Multiple Surfaces,' Fluid Dynamics Research, Vol. 20, 1997, pp.97-113 https://doi.org/10.1016/S0169-5983(96)00047-0
  7. G. M. Faeth, 'Evaporation and Combustion Sprays,' Progress in Energy and Combustion Science, Vol. 9, 1983, pp.1-76 https://doi.org/10.1016/0360-1285(83)90005-9
  8. D. M. Wang and A. P. Watkins, 'Numerical Modeling of Diesel Spray Wall Impaction Phenomena,' Int. J. Heat Fluid Flow, Vol. 14, 1993, pp.301-312 https://doi.org/10.1016/0142-727X(93)90062-R
  9. J. H. Whitelaw and Y. E. Banhawy, 'Calculation of the Flow Properties of a Confined Kerosene-Spray Flame,' AIAA J., Vol. 18(12), 1980, pp.1503-1510 https://doi.org/10.2514/3.50911
  10. U. Ghia, K. N. Ghia and C. T. Shin, 'High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multighd Method,' J. Computational Phys., Vol.48, 1982, pp.387-411 https://doi.org/10.1016/0021-9991(82)90058-4
  11. M. L. Mason, L. E. Putnam and R, J. Re, 'The Effect of Throat Contouring on Two-Dimensional Converging-Diverging Nozzles at Static Conditions,' NASA TP 1704, 1980