Journal of Korea Multimedia Society (한국멀티미디어학회논문지)
- Volume 5 Issue 5
- /
- Pages.590-598
- /
- 2002
- /
- 1229-7771(pISSN)
- /
- 2384-0102(eISSN)
A Partition Mining Method of Sequential Patterns using Suffix Checking
서픽스 검사를 이용한 단계적 순차패턴 분할 탐사 방법
Abstract
For efficient sequential pattern mining, we need to reduce the cost to generate candidate patterns and searching space for the generated ones. Although Apriori-like methods like GSP[8] are simple, they have some problems such as generating of many candidate patterns and repetitive searching of a large database. PrefixSpan[2], which was proposed as an alternative of GSP, constructs the prefix projected databases which are stepwise partitioned in the mining process. It can reduce the searching space to estimate the support of candidate patterns, but the construction cost of projected databases is still high. To solve these problems, we proposed SuffixSpan(Suffix checked Sequential Pattern mining) as a new sequential pattern mining method. It generates a small size of candidate pattern sets using partition property and suffix property at a low cost and also uses 1-prefix projected databases as the searching space in order to reduce the cost of estimating the support of candidate patterns.
효율적인 순차패턴 마이닝을 위해서는 후보패턴의 생성 비용을 줄이고 동시에 생성된 후보패턴에 대한 탐색공간을 줄여야 한다. 그러나 이전에 개발된 알고리즘들은 이러한 문제들을 효율적으로 해결하지 못하고 있다. 특히 Apriori-like 방법들은 알고리즘은 단순하지만 많은 크기의 후보패턴 집합생성, 대용량 데이터 베이스의 반복적인 탐사 등의 문제점이 있고, PrefixSpan[2]은 단계별로 분할된 프레픽스 프로젝티드(prefix projected) 데이터 베이스들을 구성 하여 후보패턴의 지지도 계산을 위한 탐색 공간을 줄이지만 프로젝티드 데이타베이스들의 구성비용이 크다는 문제점이 있다. 이러한 문제점들의 개선을 위해 본 논문에서는 새로운 순차패턴 마이닝 방법인 Suffixspan(Suffix Checked Sequential Pattern mining)을 제 안한다. Suffixspan은 순차패턴 집합의 단계별 분할특성과 서픽스(suffix) 특성을 이용하여 적은 비용으로 작은 크기의 후보패턴 집합을 생성하고, 1-프레픽스 프로젝티드 데이타베이스를 구성하여 후보패턴 검사를 위한 탐색공간을 줄인다.