Phoneme Recognition based on Two-Layered Stereo Vision Neural Network

2층 구조의 입체 시각형 신경망 기반 음소인식

  • Published : 2002.10.01

Abstract

The present study describes neural networks for stereoscopic vision, which are applied to identifying human speech. In speech recognition based on stereoscopic vision neural networks (SVNN), the similarities are first obtained by comparing input vocal signals with standard models. They are then given to a dynamic process in which both competitive and cooperative processes are conducted among neighboring similarities. Through the dynamic processes, only one winner neuron is finally detected. In a comparative study, the two-layered SVNN was 7.7% higher in recognition accuracies than the hidden Markov model (HMM). From the evaluation results, it was noticed that SVNN outperformed the existing HMM recognizer.

본 연구는 입체 시각을 위한 신경망에 대한 연구 결과로서 인간의 음성을 인식하는데 적용된다. 입체 시각신경망(SVNN)에 기반한 음성인식에서, 먼저 입력된 음성 신호를 표준 모델과 비교함으로써 유사성이 얻어진다. 이 값들은 다이나믹한 처리 과정으로 주어지고 이웃한 신경소자들 사이에서 경쟁적이고 협력적인 처리를 거치게 된다. 이러한 다이나믹한 처리과정을 통해 단 하나의 가장 우수한 신경세포(winner neuron)만이 최후에 검출된다. 비교연구에서 2층 구조의 SVNN은 HMM 인식기보다 인식정확도 측면에서 7.7% 더 높았다. 평가 결과. SVNN은 기손리 HMM 인식기 성능을 능가하는 것으로 나타났다.

Keywords