DOI QR코드

DOI QR Code

A ROLE OF PROTO-ACCRETION DISK: HEATING PROTO-PLANETS TO EVAPORATION

  • Published : 2002.09.01

Abstract

We study a role of the proto-accretion disk during the formation of the planetary system, which is motivated with recent X-ray observations. There is an observational correlation of the mass of extrasolar planets with their orbital period, which also shows the minimum orbital period. This is insufficiently accounted for by the selection effect alone. Besides, most of planetary formation theories predict the lower limit of semimajor axes of the planetary orbits around 0.01 AU. While the migration theory involving the accretion disk is the most favorable theory, it causes too fast migration and requires the braking mechanism to halt the planet~0.01 AU. The induced gap in the accretion disk due to the planet and/or the truncated disk are desperately required to stop the planet. We explore the planetary evaporation in the accretion disk as another possible scenario to explain the observational lack of massive close-in planets. We calculate the location where the planet is evaporated when the mass and the radius of the planet are given, and find that the evaporation location is approximately proportional to the mass of the planet as ${m_p}^{-1.3}$ and the radius of the planet as ${r_p}^{1.3}$. Therefore, we conclude that even the standard cool accretion disk becomes marginally hot to make the small planet evaporate at~0.01 AU. We discuss other auxiliary mechanisms which may provide the accretion disk with extra heats other than the viscous friction, which may consequently make a larger planet evaporate.

Keywords

References

  1. ApJ v.438 Abramowicz, M. A.;Chen, X.;Kato, S.;Lasota, J.-P.;Regev, O. https://doi.org/10.1086/187709
  2. MNRAS v.334 Armitage, P. J.;Livio, M.;Lubow, S. H.;Pringle, J. E. https://doi.org/10.1046/j.1365-8711.2002.05531.x
  3. Science v.276 Boss, A. P. https://doi.org/10.1126/science.276.5320.1836
  4. ApJ v.563 Boss, A. P. https://doi.org/10.1086/323694
  5. JA&SS v.18 Chang, H.-Y.
  6. ApJ v.490 Chiang, E. I.;Goldreich, P. https://doi.org/10.1086/304869
  7. A&A v.385 D'Angelo, G.;Henning, T.;Kley, W. https://doi.org/10.1051/0004-6361:20020173
  8. MNRAS v.332 Del Popolo, A.;Eksi, K. Y. https://doi.org/10.1046/j.1365-8711.2002.05343.x
  9. MNRAS v.325 Del Popolo, A.;Gambera, M.;Ercan, N. https://doi.org/10.1046/j.1365-8711.2001.04517.x
  10. ApJ v.560 Dullemond, C. P.;Dominik, C.;Natta, A. https://doi.org/10.1086/323057
  11. A&A v.389 Dullemond, C. P.;van Zadelhoff, G. J.;Natta, A. https://doi.org/10.1051/0004-6361:20020608
  12. PASJ v.53 Fujimoto, S.-I.;Arai, K.;Matsuba, R.;Hashimoto, M.-A.;Koike, O.;Mineshige, S. https://doi.org/10.1093/pasj/53.3.509
  13. ApJ v.241 Goldreich, P.;Tremaine, S. https://doi.org/10.1086/158356
  14. ApJ v.572 Imanishi, K.;Tsujimoto, M.;Koyama, K. https://doi.org/10.1086/340306
  15. ApJ v.567 Kastner, J. H.;Huenemoerder, D. P.;Schulz, N. S.;Canizares, C. R.;Weintraub, D. A. https://doi.org/10.1086/338419
  16. PASP v.114 Kenyon, S. J. https://doi.org/10.1086/339188
  17. ApJ v.547 Kley, W.;D'Angelo, G.;Henning, T. https://doi.org/10.1086/318345
  18. ApJ v.574 Kuchner, M. J.;Lecar, M. https://doi.org/10.1086/342370
  19. Nature v.380 Lin, D. N. C.;Bodenheimer, P.;Richardson, D. C. https://doi.org/10.1038/380606a0
  20. ApJ v.572 Liu, B. F.;Mineshige, S.;Shibata, K. https://doi.org/10.1086/341877
  21. MNRAS v.208 Livio, M.;Soker, N. https://doi.org/10.1093/mnras/208.4.763
  22. PASP v.112 Marcy, G. W.;Butler, R. P. https://doi.org/10.1086/316516
  23. Science v.279 Murray, N.;Hansen, B.;Holman, M.;Tremaine, S. https://doi.org/10.1126/science.279.5347.69
  24. ApJ v.565 Murray, N.;Paskowitz, M.;Holman, M. https://doi.org/10.1086/324536
  25. A&A v.371 Natta, A.;Prusti, T.;Neri, R.;Wooden, D.;Grinin, V. P.;Mannings, V. https://doi.org/10.1051/0004-6361:20010334
  26. A&A v.335 Nelemans, G.;Tauris, T. M.
  27. MNRAS v.318 Nelson, R. P.;Papaloizou, J. C. B.;Masset, F.;Kley, W. https://doi.org/10.1046/j.1365-8711.2000.03605.x
  28. ApJ v.574 Ohsuga, K.;Mineshige, S.;Mori, M.;Umemura, M. https://doi.org/10.1086/340798
  29. ApJ v.568 Patzold, M.;Rauer, H. https://doi.org/10.1086/339794
  30. Rep. Prog. Phys. v.63 Perryman, M. A. C. https://doi.org/10.1088/0034-4885/63/8/202
  31. AJ v.119 Quillen, A. C.;Holman, M. https://doi.org/10.1086/301171
  32. ApJ v.572 Rafikov, R. R. https://doi.org/10.1086/340228
  33. Science v.274 Rasio, F. A.;Ford, E. B. https://doi.org/10.1126/science.274.5289.954
  34. MNRAS v.316 Ryan, S. G. https://doi.org/10.1046/j.1365-8711.2000.03777.x
  35. A&A v.24 Shakura, N. I.;Sunyaev, R. A.
  36. ApJ v.572 Sandquist, E. L.;Dokter, J. J.;Lin, D. N. C.;Mardling, R. A. https://doi.org/10.1086/340452
  37. ApJ v.116 Soker, N. https://doi.org/10.1086/300503
  38. ApJ v.548 Shu, F. H.;Shang, H.;Gounelle, M.;Glassgold, A. E.;Lee, T. https://doi.org/10.1086/319018
  39. ApJ v.500 Trilling, D. E.;Benz, W.;Guillot, T.;Lunine, J. I.;Hubbard, W. B.;Burrows, A. https://doi.org/10.1086/305711
  40. Icarus v.126 Ward, W. R. https://doi.org/10.1006/icar.1996.5647
  41. Nature v.384 Weidenschilling, S. J.;Marzari, F. https://doi.org/10.1038/384619a0
  42. Nature v.355 Wolszczan, A.;Frail, D. A. https://doi.org/10.1038/355145a0
  43. MNRAS v.324 Yuan, F. https://doi.org/10.1046/j.1365-8711.2001.04258.x
  44. ApJ v.568 Zucker, S.;Mazeh, T. https://doi.org/10.1086/340373

Cited by

  1. Dynamics of hot accretion flow with thermal conduction vol.420, pp.1, 2012, https://doi.org/10.1111/j.1365-2966.2011.20006.x