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Lasing modes of laser-diode-pumped fiber grating lasers are analyzed by coupled-mode theory.
First, a power series solution of the coupled-mode equations is derived under the assumption of an
exponentially-decreasing longitudinal modal gain profile for a laser-diode-pumped grating section,
followed by determination of the transfer matrix for such a section. Based on these results, an
eigenvalue equation for oscillation is then derived and solved numerically for the lasing modes of
uniform and phase-shifted fiber grating lasers. Comparisons made with the uniform-gain results
indicate that, surprisingly, the lasing mode characteristics are not as significantly altered as might
be expected in most cases, even for a highly nonuniform gain profile. In the case of a phase-
shifted grating, the phase-shift position appears to have a much greater impact on determining the
threshold gain, the modal field distribution, and the front-to-back output power ratio.

OCIS codes : 060.0060, 140.0140, 250.0250.

I. INTRODUCTION

There has been a growing interest in laser-
diode (LD)-pumped fiber grating lasers in recent
years due to their attractiveness for a variety of
wavelength-division-multiplexing (WDM)- and fiber
sensor-related applications [1,2]. In addition to pos-
sessing the inherent advantages of excellent spectral
discrimination and built-in integration features, fiber
grating lasers can be made compact and wavelength-
tunable, and are easier to fabricate than the dis-
tributed Bragg reflector counterpart because the grat-
ing region itself is directly LD-pumped. Most of the
published results on fiber grating lasers have, how-
ever, been mainly of experimental nature, dealing with
the fabrication and characterization of the device [3,4].
While a few papers have dealt with certain theoretical
aspects related to fiber grating lasers, such as the evo-
lution of the pump and the signal beams and the popu-
lation densities along the fiber and polarization-mode
competition [5,6], there has been no published work up
to now to the best of our knowledge dealing with how
the nonuniform gain established by the pump beam
affects the lasing (longitudinal) mode spectra and the
associated field distributions at the threshold level.
This provided the motivation for our research since re-
sults of such an analytical treatment, which has been
lacking thus far, could lend a valuable insight into is-

sues such as the side-mode-suppression ratio, the ex-
tent of spatial hole-burning, and the device’s output
efficiency, as well as provide a theoretical basis for de-
sign of a more complex form of fiber grating laser.

In the work presented here, we derive a power series
solution to the coupled-mode equations for the case of
an exponentially-decreasing longitudinal modal gain
profile corresponding to a weakly-pumped fiber grat-
ing section. From this result, we obtain the transfer
matrix of such a section for the eventual purpose of ap-
plication toward analysis of phase-shifted structures.
Based on these, we then determine semi-numerically
the properties associated with the lasing modes of LD-
pumped fiber grating lasers, both uniform and phase-
shifted versions. In particular, the mode spectra,
i.e., the normalized lasing frequency and the threshold
gain, the associated field distribution, and the ratio of
the forward-versus-backward power emissions of the
modes are analyzed and compared to the correspond-
ing uniform-gain results.

II. ANALYSIS

1. Power series solution for coupled-mode
equations

Consider a fiber grating of length L with a uniform
grating period and coupling strength. We begin the
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FIG. 1. Fiber grating laser model: (a) uniform fiber
grating structure (b) exponentially-decreasing modal gain
profile.

analysis by modifying the usual coupled-mode equa-
tions to incorporate the nonuniform gain caused by
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the LD pump beam incident from one side of the fiber
grating laser as shown in Fig. 1(a).

d_I;(z_) = (a2z) — jO)R(z) — jKS(2) 1
A
%f;) = —(a(2) - j8)S(2) + jr*R(z)  (2)

where R(z) and S(z) are the complex-amplitudes of
the field components traveling in the +z (forward)
and -z (backward) directions, respectively, ¢ is the
frequency detuning parameter, and k is the coupling
coefficient. We take the modal gain coefficient to pos-
sess an exponentially-tapered distribution

a(z) = agexp (—az), (3)

as shown in Fig. 1(b), given that the pump beam pro-
viding the gain is continuously absorbed as it propa-
gates through the grating and that there is little gain
saturation at the threshold.

Upon manipulating the above equations, we obtain
the following pair of uncoupled equations for R(z) and
S(z):

£83)- (582 -] {55} o

where the upper branch (+ sign) of the da(z)/dz term
applies to R(z) and the lower branch (— sign) to S(z).
This discrepancy between R(z) and S(2), which does
not exist in the uniform-gain limit, reflects the fact
that the two waves travelling in the opposite directions
experience different gain variations as they propagate
through the grating.

Because of the nonuniform gain, simple closed-form
solutions cannot be obtained for (4). Instead, by mak-
ing use of the fact that «(z) has a simple Taylor series
expansion, we shall employ a power series representa-
tion to construct a solution for R(z) and S(z). We
first expand R(z), S(z), and a(z) into power series
of the normalized variable u = z/L and substitute
them into (4). Then, we group the terms with the
identical powers of u on the left-hand side of (4) and
require the sum to be identically zero for all powers.
This results in an infinite set of algebraic relations in-
volving the unknown power series coefficients of R(z)
and S(z). It turns out that for both R(z) and S(z),
the corresponding power series consists of a sum of
two independent parts, each part taking the form of a
deterministic power series multiplied by an unknown

constant. Thus, we obtain the following form of gen-
eral solution for R(z) and S(z)

R(u) = roPr(u) + r1Qy(u) (5)

S(u) = s Ps(u) + 51Qs(u) (6)

where P,(u) and @Q,(u), and P;(u) and Q,(u) each
represent the two independent solutions (the deter-
ministic power series functions mentioned above) of
the differential equations for R(z2) and S(z), re-
spectively, in the presence of the exponentially-
decreasing modal gain distribution. = They play
the role of cosh(vyz) and sinh(yz), where v =
VIK[2 + (ap — j6)2, the well-known solution for R(z)
and S(z) in the uniform gain limit a(z) = ap. The
constants Yo, 1, So, and sy are the weighting fac-
tors whose relationships are to be determined from the
coupled-mode equations and boundary conditions.

Following the steps described above, it can be shown
that each of the functions P.(uw), Qr(u), Ps(u), and
Q@s(u) has a power series representation of the same
generic form
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FIG. 2. Longitudinal distribution of the power series solution functions |Pr(u)|, |Qr(u)|, |Ps(w)|, and |Qs(u)]:

(a) [P-(w)], (b) |Qr(w)] , (¢) [Ps(w)l, (d) 1Qs(w)].

B(u) = Z bpu™ (7)
n=0

The generic expression for the sets {pn}, {gn}, {P,},
and {¢,,},n =0,1,2, -, which represent the power se-
ries coefficients for the functions P.(u), @, (u), Ps(u),
and Qs(wu) in (7), respectively, are given in a recursive
form for n > 2 follows:

n—3
1 P
=—— {bn~2(go +RP-8)+ ) bkgn—k——z}

on n(n —1) =
(8)

where
gm = ((—&)™/m!)(2™a3 — G(2j6 £ 4)), m >0 (9)

In the above equation, the + sign in front of & ap-
plies to {p,} and {g.} and the — sign to {p},} and
{q,.}, respectively, and we have made use of param-
eter normalization &g = agL, 6 = 6L, & = kL, and
4 = aL. The coefficient values for the n = 0,1 cases
arepo =pp=q1 =¢; = 1 and g = go =p1 =p; =0,
respectively.

Figs. 2 (a) - (d) display the spatial dependences of
| P (u)], |Qr(w)}, |Ps(w)|, and |Qs(u)] for different com-
binations of & and § values, with & and &g fixed at 2.
& = 0 and 0 = 0 correspond to the uniform-gain and
the Bragg wavelength conditions, respectively, and
serve as a reference to illustrate how the longitudi-
nal gain attenuation (@ # 0 ) and frequency detuning
(6 # 0) affect the field distribution. Note that there
are significant discrepancies between the uniform-gain
and nonuniform-gain results in all the figures. In par-
ticular, | P,(u)| and |Q,(u)| distributions are different
from those of |Ps(u)| and |Qs(u)] when & # 0 as a
direct consequence of the sign difference in (4) and
(9). These distributions, however, become identical
in the limit of @ — 0 as evident from the figures; in
fact, {P-(u), Ps(u)} and {Qr(u), Qs(u)} reduce to the
uniform-gain solutions cosh (yz) and sinh (-yz), respec-
tively.

2. Transfer matrix

For analysis of fiber grating lasers consisting of com-
plicated structures, such as phase-shifted and multi-
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section gratings, transfer matrix formalism provides
a convenient means-of relating the input and output
fields, and in fact it has been widely used for analy-
sis of grating structures with a uniform gain and/or
loss [7]. We can utilize the transfer matrix approach
exactly in the same manner even in the presence of
a nonuniform gain, as is the case here, provided the
nonuniform nature of the gain is taken into account
in deriving the transfer matrix. The grating to be an-
alyzed, regardless of its complexity, could be divided
into a number of piecewise-uniform sections, whence
the transfer matrix for each section is computed in
the manner described below. These transfer matrices
would then be multiplied together to yield the transfer
matrix for the overall structure, from which its lasing
modes could be determined. A composite structure
consisting of uniform sections with different grating
duty cycles (but with the same grating period) could
be treated similarly if the coupling coefficient value
consistent with the prescribed duty cycle - to be com-
puted by Fourier analysis of the longitudinal index
profile of the grating’s core - is used for each uni-
form section. Should the grating period vary from
one section to the next as well, we also need to ad-
just the value of the frequency detuning parameter
0 for each section - even for a fixed wavelength - as
the definition of § involves the grating period (see [§]
for a discussion on limitation of the usual two-mode
coupled-mode model involving such a case).

To derive the transfer matrix for a uniform grating
section, i.e., a grating with constant coupling strength
k, with the presumed exponential gain profile, we
first express the forward- and backward-traveling field

components at the normalized location u by

E+(u) = R(u)e~Pou (10)

E~(u) = S(u)etiboy, (11)

respectively, where ,30 represents the propagation con-
stant at Bragg wavelength normalized by length L.
Evaluating them at v = 0 with help of (5) and (6)
immediately yields the relationships

E*(0) = R(0) = ro (12)

E~(0) = 5(0) = so, (13)

which relate the constants ro and sg to the (pre-
sumably known) input field components E+(0) and
E~(0), respectively. In deriving (12) and (13), we
have made use of the fact that Q,.(0) = Q:;(0) = 0
and P(0) = Ps(0) = 1. Thus, we can now express
R(u) and S(u) in terms of E+(0), £~ (0) and the un-
known constants 1, s;. Next, these R(u) and S(u)
expressions are substituted into the (normalized ver-
sion of) coupled-mode equations (1) and (2), which
produce two linear relations for r1 and s; in terms of
E*(0) and E~(0). By solving for riand s in terms
of ET(0) and E~(0), we can now express all four con-
stants g, 1, S0, and s1, and thus E¥(u) and E~ (u) at
an arbitrary location u in terms of E+(0) and E~(0).

Based on the procedure summarized above, we can
obtain the following matrix relationship between the
input and the output field components:

Et(u)] _ |eibx g Pr(u) + AQ-(v)  BQr(u) E+(0)

[ E-(u) ] = [ 0 etifeu [ CQuw)  Pu(u) + DQu(u) ] [E‘ (0) ] (14)
where

A= o [ IRPP)Qu(w) — (PL(u) — MP-(u)HQL(w) + MQ,(u)} ] (15)
B = % [ &Ps(u){Q}(u) + MQs(u)} — &Qs(u){Py(v) + MPy(w)} ] (16)
C = & | & Pr(u){Q4(w) — MQu(w)} ~ #*Qu(){Pw) ~ MPy(u)} | (1)
D= i— [ 1A1°Qr(w) Ps(u) — {Py(u) + MPs(u)HQ(v) — MQr(u)} ] (18)
A ={Q(u) — MQr(u)HQ4(u) + MQs(w)} — |A*Qs(u)Qr(u) (19)

M = Gge™ ™ — 5§ (20)
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In the above, a prime (') denotes a derivative with re-
spect to u. Of course, this result reduces to that of
the standard transfer matrix in the uniform-gain case
as @ — 0, i.e., as the gain’s nonuniformity disappears.

3. Lasing modes

Next we shall derive an eigenvalue equation for the
lasing condition that would allow us to determine the
oscillation frequency and the required gain of the las-
ing modes at threshold, and also analyze their end-
emission characteristics. We shall first examine the
case of a laser composed of a single uniform fiber grat-
ing section, and then proceed to the more complicated
case of a laser utilizing a phase-shifted fiber grating
section. In both cases, the boundary condition of zero
reflection at two ends of the grating structure imposes
the following requirement of

Ru=0)=Su=1)=0 (21)

This zero-reflection boundary condition at both ends
is based on the assumption that the fiber grating is
part of a fiber segment and not detached from it.

A. Uniform fiber grating laser

Upon applying the boundary condition (21) and by
making use of the coupled-mode relations (1) and (2)
at u = 0 (z = 0) and also the fact that Q.(0) =
Qs(0) = PI(0) = P;(0) =0, @.(0) = Q4(0) = 1,
we can obtain the following expressions for the R(z)
and S(z) distributions within the uniform grating fiber
laser:

R(u) = Qr(u) (22)

sw=-1(rw-FHew) @)

In the above equations, the amplitude scaling factor
has been set to unity for convenience since we are per-
forming only a linear analysis in this paper. Upon
comparing (22) and (23) with the general solution as
given by (5) and (6), we note that the constants rp,
r1, So, and sy appearing in (5) and (6) take on the
values of 0, 1, j/&, and —j Ps(1)/#Q4(1), respectively,

where

[T(i)] _ tgzl) tglz) _ e JPoui q
tgll) tgz) 0 etiBou:

Pr(u;) + AiQr (u;)

|

Phase-Shift

Forward Wave

Incident

FIG. 3. Phase-shifted fiber grating laser model.

in this case. Applying the coupled-mode relations
once again, this time at v = 1 (z = L), yields the
desired eigenvalue equation

QL(1)/Qr(1) = doe™® — jé (24)

The set of (8, &) values satisfying (24) for the given &
and & values correspond to the normalized (detuned)
frequency and the threshold modal gain of the lasing
modes for the uniform fiber grating laser.

B. Phase-shifted fiber grating laser

When the fiber grating laser is based on a phase-
shifted structure, i.e., with a phase-shift in the grating
profile at some location, the field distribution on the
two sides of the phase-shift takes on a distinctively dif-
ferent appearance and thus cannot be uniformly rep-
resented by the same set of functions. As a result,
the lasing condition cannot be cast in a simple equa-
tion form such as (24) in this case. Instead, it is more
convenient to make use of the transfer matrix intro-
duced earlier to obtain the corresponding eigenvalue
equation as shown below.

Assume that the grating phase-shift is located at
z = L* (see Fig. 3). Then, we can relate the forward-
and backward-traveling electric field components at
the left facet (z = 0) to those at the right facet (z = L)
as follows:

[gf%g] - [T(2>] [T(n] [gfgg” = [T] [giggg]

(25)

Ps(ui)—!-DiQs(u,-)]’ i=1,2 (26)

CiQs(ui)
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In the above, [T™] and [T(?] are the transfer matri-
ces for the section to the left of the phase-shift, i.e.,
for 0 < z < L*, and for the section to the right,
ie., for L* < z < L, respectively, and w; and usg
are the normalized lengths of the two sections, L*/L
and (L — L*}/L. Thus, [T], the product of the two
matrices, represents the transfer matrix for the total
phase-shifted grating structure. Although the same
functional form of (15)-(20) applies in evaluating both
[TM)] and [T?®)], &o must be replaced by &oe™", the
normalized gain at the beginning of the section to the
right, for the latter, assuming that the exponential ta-
per of the modal gain is unaffected by the phase-shift.
Similarly, the value of £ to be used in evaluation of
[T®)] must be adjusted by taking into account the
correct grating phase at z = L*¥.

To determine the eigenvalue equation for lasing con-
dition, we impose the condition E*(0) = E~(L) =0
on (25) to be consistent with the self-oscillating nature
of lasing and the zero end-reflection assumption

T =m0 = ] 2w
(27)

from which we obtain the desired eigenvalue equation
of the phase-shifted fiber grating laser as follows:

@), , (2),() 1ty
tor =tytiy tlatyy =0 = -G =-——55 (28)
t22 t12

As with the earlier case, the set of (§,dq) values sat-
isfying the eigenvalue equation, (28) this time, con-
stitute the lasing modes of the phase-shifted grating
laser.

III. NUMERICAL RESULTS AND
DISCUSSION

In this section, numerical results pertaining to the
mode spectrum, the mode field distribution, and the
associated side (end)-emission ratio will be presented
and discussed for the two types of lasers analyzed
above. With the uniform grating laser, the follow-
ing three cases were examined that correspond to dif-
ferent levels of erbium and/or ytterbium doping den-
sity: (a) & = O (uniform gain); (b) & = 0.5; and
(c) @ = 1. Cases (b) and (c) correspond to atten-
uation of the power gain at the grating’s right end
by a factor of e~! ~ 0.37 and e~? ~ 0.14, respec-
tively, relative to that at the left end. As for the
phase-shifted grating laser, six different cases were an-
alyzed with various combinations of the phase-shift
position (z = 0.25L,0.5L, and 0.75L) and the & value
(& = 0,2), all with the grating phase-shift of 7, cor-
responding to the quarter-wavelength phase-shifted
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FIG. 4. Lasing mode spectrum: (a} uniform grating
laser (b) phase-shifted grating laser.

(QWPS) case. Although the phase-shift locations of
z = 0.25L and z = 0.75L are symmetric with respect
to the center of the structure, both cases were in-
cluded nonetheless to examine the effects of the asym-
metric modal gain distribution caused by the nonuni-
form pumping, i.e., pumping from only one particular
side. In all calculations, the & value was held con-
stant at 2, and typically no more than 30-40 terms
were required for convergence of the power series for
Pr(u), Qr(u), Ps(u), and Q,(u).

The lasing mode spectrum can reveal useful infor-
mation regarding the laser’s threshold gain and the
side-mode-suppression ratio. Figs. 4(a) and (b) show
the computed mode spectra for the uniform (zero
phase-shift) and the phase-shifted fiber grating lasers,
respectively. We note from Fig. 4(a) that the mode
spectrum for each uniform grating case is symmetric
with respect to & = 0, i.e., the Bragg wavelength,
even in the presence of a nonuniform gain, giving
rise to a doubly-degenerate mode spectrum structure.
This feature, whose generality can easily be proved,
is similar to that of a purely index-coupled uniform-
gain semiconductor distributed-feedback (DFB) laser.
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Surprisingly, the general features of the mode spectra
for the nonuniform-gain cases (@ # 0) are not signif-
icantly different from those of the uniform-gain case
(@ = 0). The normalized mode frequencies are nearly
the same as before and although there are definite
increases in the threshold gain due to the lower av-
erage gain across the grating length compared to the
uniform-gain case, the differences are not dramatic,
especially for the lower-order modes.

Most of the above remarks apply to the phase-
shifted grating laser results in Fig. 4(b) as well, with
the exception of the additional nondegenerate mode’s
appearance at § = 0, which is also consistent with
the previous findings regarding the index-coupled,
uniform-gain QWPS DFB laser. However, there are
other aspects of Fig. 4(b) that are worth mentioning.
The foremost is that the location of the phase-shift has
a strong influence on the mode spectrum, especially in
the presence of a nonuniform gain. The uniform-gain
results for the three different phase-shift positions are
closely bunched, with the lowest-order mode (funda-
mental mode) for the centered (z = 0.5L) case pos-
sessing the minimum threshold gain value. While the
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corresponding nonuniform-gain results are generally
closely grouped together as well, there are two major
differences between the two sets of results. For one,
the modes for the nonuniform-gain cases have substan-
tially higher threshold gain values. Moreover, because
a higher gain attenuation rate (¢ = 2) was assumed
for the phase-shifted grating calculations - as opposed
to @ = 0.5 and @ = 1 for the uniform grating calcu-
lations - the extent of increase in the threshold gain
over the corresponding uniform-gain results is larger
overall than in the uniform grating results. The other
major difference is that the degeneracy between the
z = 0.25L and z = 0.75L cases which had existed
in the uniform-gain regime is now broken. To wit,
the mode spectra of the two cases are identical in the
uniform-gain regime - as evidenced by the complete
overlap of the two results (marked by upright and in-
verted triangles) in Fig. 4(b) - but they are separated
in the nonuniform-gain regime (denoted this time by
diamond and cross symbols, respectively), with the
lowest-order mode for the z = 0.75L case now pos-
sessing a very large threshold gain.

A physical explanation for the aforementioned dis-
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FIG. 5. Relative intensity distribution |R(u)|? 4 |S(u)|? for the three lowest-order modes: (a) uniform grating laser
(b) phase-shifted grating laser with the phase-shift at z = 0.25L (c) phase-shifted grating laser with the phase-shift
at z = 0.5L (d) phase-shifted grating laser with the phase-shift at z = 0.75L.
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TABLE 1. Forward-to-backward output intensity ratio: (a) uniform grating laser (b) phase-shifted grating laser
(L* . phase-shift location).

=0 a=0.5 a=1
Mode 1 1.000 0.879 0.773
Mode 2 1.000 0.936 0.877
Mode 3 1.000 0.960 0.922
(a)
a=0 a=0 a=0 a=2 a=2 a=2
L* =0.25L L* =05L L* =0.75L L* =0.25L L* =0.5L L* = 0.75L
Mode 1 0123 1.000 8.112 0.086 0.751 10.87
Mode 2 2.364 1.000 0.423 1.611 0.939 0.340
Mode 3 1.786 1.000 0.560 1.530 0.611 0.742
(6)

crepancy can be given as follows. With a uniform
gain, the two cases with the phase-shift at z = 0.25L
and z = 0.75L represent structures - gain profile in-
cluded - that are mirror images of each other and thus
they must possess identical mode properties. How-
ever, once this structural symmetry is broken by the
nonuniform gain profile due to LD-pumping from the
z = 0 side, the two cases represent physically dif-
ferent structures and consequently the lasing modes
become distinguishable. The fact that the lowest-
order mode’s threshold gain for the @ = 2, z = 0.75L
case is so much greater is one direct consequence of
such bifurcation. Specifically, because the field gain
is diminished to a much lower level - by a factor of
e~ = ¢=~((0.75) ~ .22 relative to the initial gain
ap - at the phase-shift location z = 0.75L, around
which the field energy associated with the lowest-
order mode at 6 = 0 is highly concentrated (see “mode
1” in Fig. 5(d)), we would expect that the gain at-
tenuation would have a much more adverse impact
on this particular mode compared to the other modes
that possess a more even distribution.

The modal field distribution provides important in-
formation regarding the extent of spatial hole-burning
and the side-emission ratio that can be expected when
the laser is lasing in that particular mode. Figs. 5
(a)-(d) represent the combined intensity distribution
|R(u)[? + |S(u)|? on a normalized scale for the three
lowest-order modes associated with the uniform grat-
ing (Fig. 5 (a)) and the QWPS grating results (Figs.
5 (b)-(d) for the phase-shift locations of z = 0.25L,
0.5L, and 0.75L, respectively) discussed above. Since
the degenerate modes at (4, ap) and (=6, ap) possess
the same intensity distribution, only the modes in the
& > 0 region are shown here, with the mode num-
ber assigned according to its proximity to the Bragg
wavelength (§ = 0). The most obvious feature seen
from these figures is that in all nonuniform-gain re-
sults, deviations from the corresponding uniform-gain

results are evident in the form of their asymmetric
distributions - with respect to the center of the grat-
ing v = 1/2 - and the greater undulation of these
distributions. Generally speaking, the extent of these
undulations becomes more pronounced with the in-
creasing & value (gain nonuniformity) and the mode
order. However, as with the mode spectrum results
earlier, the deviations between the uniform-gain and
the nonuniform-gain results are not for the most part
as noticeable as one might expect, given the mag-
nitude of the gain nonuniformities. We believe that
this is probably due to the grating-assisted coupling
between the forward and backward waves: evidently,
impact of the asymmetry in the gain profile as “seen”
by the two waves is greatly tempered by the contin-
uous exchange of power between them. Without this
distributed-feedback mechanism, for example as in a
fiber laser constructed from a plain uniform fiber sec-
tion with cleaved ends, gain nonuniformity due to side-
pumping should lead to more profound changes.

An exception to the rule is the lowest-order mode
(mode 1) of the QWPS case with the phase-shift at
z = 0.75L. Unlike the other modes, its energy is
concentrated primarily near the phase-shift location
where the gain attenuation happens to be quite ap-
preciable. As a result, this mode undergoes the most
dramatic change in reference to the uniform-gain re-
sult, as borne out by the sharp increase in its threshold
gain (see Fig. 4(b)) and the significant increase in its
relative intensity in the neighborhood of the phase-
shift location (see Fig. 5(d)).

Another useful piece of information that can be
gleaned from the modal distribution is the side-
emission ratio, i.e., the ratio of the forward and back-
ward output intensities, X = |R(1)/S(0)|>. From a
practical standpoint, we would like a laser to emit
most of its power to just one side, corresponding to
either X > 1 or X « 1. For the purpose of com-
parison, the side-emission ratio of the three lowest-
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order modes was tabulated in Table 1 (a) and (b) for
each of the cases mentioned above. The results can
be summarized as follows. First, the side-emission ra-
tio for the uniform grating and the centered-QWPS
grating (the phase-shift at z = 0.5L) is unity in the
uniform-gain limit regardless of the mode because of
their symmetric structures. However, the ratio dimin-
ishes to lower values in the presence of gain nonuni-
formity, implying more emission in the backward di-
rection, since the symmetry is now broken. The fact
that the forward emission is less than the backward
emission in these cases is a manifestation of the for-
ward wave being influenced more by the exponential
tapering of the longitudinal gain distribution. Sec-
ond, the emission ratios are the inverses of each other
in the uniform-gain limit for the QWPS cases with the
phase-shift at z = 0.25L and z = 0.75L, respectively,
as the two structures are mirror images of each other
in this situation. In particular, the emission on the
side nearer to the phase-shift location is greater than
the emission on the opposite side by a factor of 8 or
so for the fundamental mode. In the presence of gain
attenuation, this inverse relation between the two sets
of emission ratios is no longer preserved, with the ra-
tio of the stronger emission over the weaker emission
for the fundamental mode of the both cases now ap-
proaching the neighborhood of 11. Thus, looking at
just the emission ratio, the fundamental mode of the
grating laser with the phase-shift located towards one
end of the structure is seen to produce a highly direc-
tional output, with the directionality actually being
enhanced by nonuniform-gain. By comparison, the
emission ratios of other modes are only in the range
of 0.340 to 2.364.

In this section, we have examined the threshold
gain, intensity distribution and the side-emission ra-
tio associated with the lasing modes of LD-pumped
uniform grating and phase-shifted (QWPS) grating
structures under a variety of conditions. Based on
these results, we conclude that the impact a nonuni-
form gain profile has on the modal properties is less se-
vere than expected, except for the fundamental mode
when the phase-shift location is near the far-end of the
structure. As far as the “optimum” case/mode is con-
cerned, while the fundamental mode of the centered
phase-shift case possesses the minimum threshold gain
with or without gain nonuniformity, the fundamen-
tal mode associated with the phase-shift location at
z = 0.25L possesses the most desirable side-emission
ratio, i.e., directional property, at a reasonable thresh-
old gain among the cases analyzed. The only draw-
back of this mode is that most of its output power is
emitted at the near-end where the pump beam is in-
jected, which could make output coupling somewhat

cumbersome.

IV. CONCLUSION

We obtained the longitudinal mode characteristics
of LD-pumped fiber grating laser at threshold by using
a power series solution based on the assumption of an
exponentially-decreasing gain distribution. The mode
features, for the most part, were found to be surpris-
ingly similar to those of the uniform-gain results even
for a highly nonuniform gain distribution. For phase-
shifted fiber grating lasers, the phase-shift location ap-
pears to play a more important role than the gain at-
tenuation itself in determining the side-emission ratio
and the threshold gain. However, the gain attenu-
ation does break the structural symmetry and as a
result phase-shift location near the LD-pumped end
is deemed more preferable than at the opposite end.
The power series solution to the coupled-mode equa-
tions and the corresponding transfer matrix derived
here should also be applicable to a similar threshold
analysis of LD-pumped fiber grating structures of ar-
bitrary complexity.
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