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Abstract: We give a brief overview of nonlinear localized modes in photonic crystals. We
explain how photonic crystals can potentially be important in making small scale active devices
which operate in an all optical way. Two models to approach nonlinear photonic crystals, the
coupled mode theory and the discrete lattice theory using a Green’s function, are explained.
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I. INTRODUCTION

One of the major challenges in the study of photonic
crystals [1] is to make them tunable. Tunable photonic
crystals operating in an all-optically controlled way
hold great promise in the future as a possible candi-
date for replacing electronic, semiconductor based de-
vices. All optical control is highly desirable for faster
operational speed and lower manufacturing cost. Such
promise may be realized through the utilization of the
nonlinear optical properties of materials in designing
photonic crystals. This produced a rapidly growing
research activities recently in the area of nonlinear
optics of photonic crystals, or the study of nonlinear
photonic crystals. It combines photonic crystals with
numerous earlier ideas and works in nonlinear optics
in the wake of newly advancing technologies. Various
topics, such as harmonic generation and wave mixing,
optical switching and limiting, ultrafast optics, soli-
tons, lasing in photonic bandgap structures, etc., have
received a large amount of attention recently. Among
them, the study of nonlinear localized modes such as
solitons in photonic crystals deserve particular atten-
tion. Recent works in this area reveal interesting novel
properties of nonlinear photonic crystals which may
find a direct application in all-optical signal process-
ing or logic operations.

But why is a photonic crystal more distinguished
than the other systems which support nonlinear local-
ized modes, e.g., an optical fiber possessing solitons
or crystals supporting spatial solitons? How can we
understand the characteristics of such nonlinear local-
ized modes in photonic crystals? These are the two
issues we will try to answer in this brief overview of
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nonlinear photonic crystals in the light of optical sig-
nal processing.

In linear wave systems, a wavepacket can be of any
shape, either large or small, since it can always be ex-
pressed as a superposition of elementary component
solutions (usually plane waves). Thus, in order to be
a digitized information carrier, a wavepacket should
take a certain form, e.g., either Gaussian or square
shape, and retain its form during propagation. The
arbitrariness in shape also implies that there are no
definite localized modes in a linear wave system when
the system possesses the translational symmetry. The
situation changes, however, if the symmetry is broken
by the presence of defects or an external potential.
In general, a confining potential gives rise to discrete,
localized modes of waves. For instance, the vanish-
ing boundary condition of an infinite potential well
results in discrete wavevectors (eigenvalues) and the
corresponding wave modes (eigenfunctions). In a pho-
tonic crystal, defects can play the role of a potential
such that localized modes can exist in an otherwise
forbidden bandgap region. However, the amplitude of
each discrete mode can still be of any value unless we
go through the quantization of energy that leads to
photons. In practice, the photon number is too big
in a realistic photonic crystal so that the procedure
of quantization is not usually necessary. Thus once
again one has to set the unit of amplitude arbitrarily
if one wants to take the localized mode as an infor-
mation carrier. It is desirable to have a small value
of amplitude for the information unit, especially for
the use of small scale, compact integrated photonic

. devices. But it can not be too small since the small

amplitude mode can be easily lost by any mechanism



Nonlinear Localized Modes in Photonic Crystals — Q-Han Park 97

which degrades the quality of the unit mode.

In nonlinear systems, things are quite differ-
ent. Certain nonlinear systems can support lo-
calized modes even without breaking translational
symmetry. More surprisingly, localized modes can
be automatically quantized. In order to illustrate
these properties, we consider the well-known nonlin-
ear Schrodinger{NLS) equation, which describes the
propagation of optical pulses in an optical fiber.

0 = —B0ut — 7|Y|*Y. (1)

Here, x and ¢ denote space and the retarded time vari-
able, ¢ the slowly varying amplitude of an electric
field, @ the group velocity dispersion and v a non-
linearity coeflicient coming from the third order sus-
ceptibility. However, the NLS equation also appears
in many other situations where the variable and coef-
ficients have a different meaning, and our discussion
serves for the general case. One way to understand
the nonlinear localized mode in the NLS equation is to
compare it with the quantum mechanical Schrodinger
equation

2

thoy = —é’%amzp + V. (2)
Note that the NLS equation can be regarded as the
usual Schrédinger equation if we identify the potential
V with minus the intensity, V = —y|¢|2. Of course,
this identification is a formal one since the intensity
itself is made of a wave function 1. Nevertheless, it
provides a qualitative understanding of nonlinear lo-
calized modes. Assume that the amplitude 1 has a
shape of a localized pulse. This introduces an ef-
fective potential well according to the identification
V = —v|y|%. If the well is too narrow, that is the
pulse is too sharp, then the experience from quan-
tum mechanics tells us that the wave function tends
to spread. For a wider well, the opposite focusing be-
havior can be observed. This adiabatic, self adjusting
mechanism can lead to a stable, stationary shape of
a pulse known as soliton. Such a shape has the form
of a hyperbolic secant function and the wave function
can be obtained analytically with the result,
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Note that the amplitude is proportional to an ar-
bitrary constant A, which in turn is inversely propor-
tional to the pulse width. Thus the time area of a
pulse [ |4|d¢t becomes w+/23/~, which depends only
on material parameters # and y. Moreover, according
to the nonlinear dynamics of the NLS equation, any
arbitrary shape input pulse breaks up into several fun-
damental solitons. The soliton itself is robust against
external disturbances by automatically self-adjusting

W= %Asech( )e:zp(iA2$)- ®3)

its form into a soliton again. Thus a soliton can be
thought of as a quantized, localized mode appearing
in classical nonlinear systems. This makes the soliton
a wonderful candidate for an information carrier. In-
deed, it is this property of solitons that brought recent
active development of the optical soliton communica-
tion system. However, there is a serious drawback in
the use of optical solitons for small scale photonic de-
vices. The pulse area is simply too big! For a fast
operational speed and also for a large capacity, the
soliton pulse width should be small, usually in the
range of picoseconds, but that requires a large peak
power of the soliton pulse in the optical fiber case.
This would be fine with a macroscopic system such
as the optical transmission system. But for small size
integrated photonic devices, the peak power, or the
pulse area, has to be significantly smaller. This re-
quires in general a large nonlinear effect (large v). A
few materials can possess a large value of the third
order nonlinear susceptibility, e.g. the chalcogenide
glass possesses several hundred times larger xs value
than the usual fiber glass. But even with these large
x3 values, since the area is inversely proportional to
the square root of the nonlinear coefficient, one still
needs a way to reduce the area to reach the desirable
operating regime such as where e.g. the operating
speed is 1 THz and each signal bit carries energy of 1
pico joule.

This is where the photonic crystal structure comes
in. Nonlinearity can not only be enhanced by using
new materials, but it can also be greatly enhanced
through the artificial structure of materials. One such
example is a microresonator structure which can con-
fine light with a high quality factor. Such a resonator
structure was shown to have an enhanced nonlinear-
ity which is proportional to the finesse squared [2,3].
Confined light in photonic crystals which is trapped
by defects can also experience enhanced nonlineari-
ties. On the other hand, the localized mode which
exists inside the bandgap can depend critically on the
intensity of light when nonlinearity is present. In non-
linear photonic crystals having periodic modulation of
the nonlinear refractive index [4], photonic band gap
indeed becomes dynamically tunable. This raises the
possibility of nonlinearity induced self trapped light
and nonlinear localized modes in photonic crystals.
Known examples of nonlinear localized modes in the
forbidden gaps are gap solitons in one- [5] or two- [6]
dimensional structures. It was shown that the total
electromagnetic energy of a gap soliton depends on
the dimension d of the system. For d = 1, there is no
threshold for creating a soliton while for d = 2, the
energy is some finite number throughout the gap [6].
In the case of a photonic crystal doped with resonant
atoms, self induced transparency(SIT) type solitons
can exist and these solitons can even be created. at
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extremely low intensities (few photons) unlike the or-
dinary SIT solitons [7]. The underlying reason for this
reduced intensity, or area, is that the Bragg reflector
can enhance by multiple reflections the field coupling
to the dopant atoms so as to make the pulse area effec-
tively 27 of the SIT soliton. This shows that photonic
crystal is a wonderful structure for enhancing nonlin-
earity thereby presenting a good potential for realistic
applications. However, explicit nonlinear crystal and
defect structures which can perform all optical opera-
tions are still largely unknown and they are important
issues of a future research.

Now, we move to the second part of the question
as to how we model such nonlinear localized modes.
The modeling of gap solitons is based on the coupled
mode theory where modes generated by the difference
in periodic refractive indices are treated as indepen-
dent variables which again are coupled through Bragg
reflections. In order to illustrate the idea of a coupled
mode theory, we consider for example the Maxwell’s
equation in the form of a scalar wave equation,
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for certain constants 8, e, 8 [6]. This is a coupled NLS
equation which is known to possess solitary wave solu-
tions. This modeling however has a serious drawback
since the contrast in dielectric constants of photonic
crystals is usually big while the above model works
only for the small constrast, i.e. the difference in re-
fractive indices are relatively small. Also, the coupled
model assumes that the added nonlinear materials also
have a periodic structure which is not true with de-
fects. Though the first example of a two-dimensional
nonlinear photonic crystal has the refractive index
constant but the second order nonlinear susceptibility
is spatially periodic [8,9], defect modes, particularly
associated with nonlinearity, hold a good promise for
future applications. These symmetry breaking defects
can not be modeled in terms of a conventional coupled
mode theory.

An alternative to the coupled mode theory is the
Green’s function approach. The Green’s function
method is widely used in the linear case of photonic
crystals {10] and in computing defect modes. An appli-
cation of the Green’s function method to the nonlinear

photonic crystals was made by assuming that the elec-

tric field inside defects is constant and by considering
fields only at defects locations [11]. This leads to an
effective discrete nonlinear lattice equation where cou-

€(F) °E(F,t)  4m &Py (7,t)
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where the nonlinear polarization Pyi = x®|E|E.
For the square lattice, we also assume the dielectric
constant of the form,

e(7) = €0 + Aefcos(Gy - 7) + cos(Gz - 7)), (5)

where G; = (27 /ao)& and G2 = (27 /ag)y. This model
exhibits an indirect photonic band gap. By expand-
ing the electric field amplitude about the band edges,
adopting the slowly varying envelop approximation,

E(F,t) = (E1(F,t)e"™* 7/ 4 Ey(7,t)e™ "8 7/)e=wt  c.c
(6)
and neglecting higher order harmonic generations, the

Maxwell’s equation simplifies to a set of coupled equa-
tions

2
+6Ey + BEy + ga“Eﬂz +2|E2|*)E1 =0

2
+ 6Ez + BEy + 0| Ba|* + 2|E1|*| E; = 0, (7
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pling constants are determined by the value of Green’s
function at each defect points. In order to understand
the method, we consider the scalar wave equation for
two dimensional photonic crystals,

VE@yt) - SRl nE =0 (§)

By splitting the dielectric constant into the periodic
linear part and the nonlinear part located at defects,

6(1"1 y) = ep(x,y) +€d($7y)v (9)
we can rewrite the scalar wave equation in the form
1 1
V2E(z,y,t) — 6—231:2[51:(96,1/)15] = c—gatz[fd(W,y)E]-
(10)

Regarding the r.h.s. of the above equation formally as
the source term, we may transform the equation into
an integral equation,

Bt = [ 607 )50 B, (1)

where the Green’s function G satisfies
(V2 — C%ep(:c,y)af)G(f',Fl ) = 6(F —7)o(t —£).
(12)
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We require that only defect rods possess nonlinearity
such that

ealF) = [ + |E(F )17 Y007 —7w),  (13)

where 8 is one at defect locations and zero otherwise.
Assuming that the electric field inside a defect is con-
stant and defining that E,,(t) = E(¥,t), we obtain
a coupled lattice model

En(t) = 3 [ @ Jn(t,t) OB + [Bn(t)PEn(t))

(14)

where Jmn(t,t) = G(7m,7,t,t ). This equation in
the static limit and with an assumption of nearest
neighbor interactions have been studied by McGurn
who showed that the intrinsic localized modes, both
even and odd type parity and kink type modes are
possible [11]. Another static case analysis including
long-range interaction has been also made [12]. Con-
sidering the case of a two dimensional photonic crystal
with embedded nonlinear rods, these works demon-
strated that the effective interaction in such a struc-
ture is nonlocal, so that the nonlinear effects can be
described by a nonlinear lattice model that include the
long range coupling and nonlocal nonlinearity. This
approach, however, require a large number of defect
modes to simulate the whole system via lattice mod-
els, and the time dynamics seems to possess only a
restricted validity. In view of application of photonic
crystals utilizing only a few point defects and defect
lines, this approach obviously has some difficulties.
Presumably, the best way to handle the problem is
to solve Maxwell’s equation numerically without mak-
ing any assumption. This can be done e.g., by using
the Finite Difference Time Domain (FDTD) method.
However such a numerical work can be followed only
after the guidance provided by simple effective models
of nonlinear photonic crystals.

In conclusion, we may safely say that the research
in nonlinear photonic crystals is still in a very early

stage. As we have argued in this paper, presently
known approaches reveal novel properties of nonlin-
ear photonic crystals but at the same time, these
approaches have very much restricted validity. In
view of promising applications of photonic crystals,
particularly as a nonlinearity-controlled active device,
we believe that the study of nonlinear photonic crys-
tals is an interesting, even aside from its important
application, and still widely open area of research.
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