전라남도 보성-장흥지역의 중열수 금광화작용

Mesothermal Gold Mineralization in the Boseong-Jangheung area, Chollanamdo-province

  • 허철호 (고려대학교 지구환경과학과) ;
  • 윤성택 (고려대학교 지구환경과학과) ;
  • 소칠섭 (고려대학교 지구환경과학과)
  • 발행 : 2002.10.01

초록

한반도의 보성-장흥지역에는, 5개의 열수 금(-은)광상이 부존하며, 다음과 같은 특징들을 보여준다: 에렉트럼의 비교적 금이 풍부한 특성; 은-안티모니(끼소)황염광물의 부재; 괴상이며 단순한 광물조성을 지닌 석영맥. 이러한 성질들은 본 지역의 금광화작용이 한반도의 주라기내지 초기 백악기의 중열수형 금광상과 대비가 됨을 지시한다. 유체포유물 연구에 의하면, 본 지역의 광화 1기 석영내 포유물은 0.0~l3.8 wt. % NaCl를 지니고 200~46$0^{\circ}C$의 넓은 온도에서 균질화하며, 광화 2기 방해석내 유체포유물은 1.2~7.9wt. % NaCl를 지니고 15$0^{\circ}C$~254$^{\circ}C$의 온도에서 균질화한다. 이는 시간이 지남에 따라 열수활동이 쇠퇴하면서 열수유체가 냉각되었음을 지시한다. $CO_2$불혼화를 포함한 비등증거는 본 지역의 함금유체의 포획시 압력이 최대 770bar에 해당됨을 지시하고 있다. 본 지역 함금유체의 계산된 황동위원소 조성(${\delta}^34S$_{{\Sigma}S}$=0.2~3.3$\textperthousand$)은 열수유체내 황의 화성기원을 지시하고 있다. 소백산육괴내에는 두 개의 대표적인 중열수형 광화대(영동지역 및 보성-장흥지역)가 부존한다. 영동지역의 황화물의 $\delta$$^{34}S$ 값은 -6.6~2.3$\textperthousand$(평균 -1.4$\textperthousand$, 분석수 66개)이며, 보성-장흥지역의 황화물의 (${\delta}^{34}S값은 -0.7~3.6$\textperthousand$(평균 1.6$\textperthousand$, 분석수 39개)이다. 두 지역의 $\delta$$^{34}$ S값은 대부분의 한반도 금속광상(3~7$\textperthousand$)의 ${\delta}^{34}S값보다 낮다. 그리고, 소백산 육괴내에서는 영동지역의${/delta}^{34}S값이 보성-장흥지역의 ${\delta}^{34}S값보다 낮다. 소백산 육괴내에서(${\delta}^{34}/S값의 차이는 다음과 같은 반응기작에 의해 야기될 수 있다: 1) 두 지역의 주라기 중열수형 금광상에 대해 적어도 두 개의 근원지(두개 모두 화성기원이며, -6$\textperthousand$ 미만 및 2$\pm$2$\textperthousand$$\delta$$^{34}$ S값)가 존재, 2) 마그마의 생성 및 상승중 $^{32}S$가 풍부한 황(선캠브리아기의 이토질 긴저암내 황)의 혼합(동화)차이; (3)광화지역까지 상승중 H$_2$S가 풍부한 마그마에서 유래된 황원(${\delta}^{34}/S=2$\pm$2$\textperthousand$)의 산화차이. 두 지역 중열수형광상의 석영내 유체포 유물과 광석광물(특히, 철을 함유한 광석광물)의 상이성을 고려하여, 영동지역의 자류철석이 풍부한 중열수형 광상이 보성-장흥지역의 황철석(-유비철석)이 풍부한 중열수형 광상보다 더욱 높은 온도와 더욱 환원된 유체로부터 생성되었음을 알 수 있다. 현재 두 지역에서 산출되는 선캠브리아 편마암과 고생대 퇴적암의 (${\delta}^{34}S값을 알지 못하므로 두 지역 황동위원소 값의 차이에 대한 원인으로 세 번째 반응기작이 가장 가능성이 크다고 판단된다. 앞으로는, 광석황의 근원을 더욱 체계적으로 규명하기 위해서, 소백산육괴를 포함한 한반도의 기저부를 이루는 선캠브리아 변성암과 고생대 퇴적암의 ${\delta}^{34}S값을 조사할 필요가 있다.

Within the Boseong-Jangheung area of Korea, five hydrothermal gold (-silver) quartz vein deposits occur. They have the characteristic features as follows: the relatively gold-rich nature of e1ectrurns; the absence of Ag-Sb( -As) sulfosalt mineral; the massive and simple mineralogy of veins. They suggest that gold mineralization in this area is correlated with late Jurassic to Early Cretaceous, mesothermal-type gold deposits in Korea. Fluid inclusion data show that fluid inclusions in stage I quartz of the mine area homogenize over a wide temperature range of 200$^{\circ}$ to 460$^{\circ}$C with salinities of 0.0 to 13.8 equiv. wt. % NaCI. The homogenization temperature of fluid inclusions in stage II calcite of the mine area ranges from 150$^{\circ}$ to 254$^{\circ}$C with salinities of 1.2 to 7.9 equiv. wt. % NaCI. This indicates a cooling of the hydrothermal fluid with time towards the waning of hydrothermal activity. Evidence of fluid boiling including CO2 effervescence indicates that pressures during entrapment of auriferous fluids in this area range up to 770 bars. Calculated sulfur isotope composition of auriferous fluids in this mine area (${\delta}^34S$_{{\Sigma}S}$$\textperthousand$) indicates an igneous source of sulfur in auriferous hydrothermal fluids. Within the Sobaegsan Massif, two representative mesothermal-type gold mine areas (Youngdong and Boseong-Jangheung areas) occur. The ${\delta}^34S values of sulfide minerals from Youngdong area range from -6.6 to 2.3$\textperthousand$ (average=-1.4$\textperthousand$, N=66), and those from BoseongJangheung area range from -0.7 to 3.6$\textperthousand$ (average=1.6$\textperthousand$, N=39). These i)34S values of both areas are comparatively lower than those of most Korean metallic ore deposits (3 to 7TEX>$\textperthousand$). And, within the Sobaegsan Massif, the ${\delta}^34S values of Youngdong area are lower than those of Boseong-Jangheung area. It is inferred that the difference of ${\delta}^34S values within the Sobaegsan Massif can be caused by either of the following mechanisms: (1) the presence of at least two distinct reservoirs (both igneous, with ${\delta}^34S values of < -6 $\textperthousand$ and 2$\pm$2 %0) for Jurassic mesothermal-type gold deposits in both areas; (2) different degrees of the mixing (assimilation) of 32S-enriched sulfur (possibly sulfur in Precambrian pelitic basement rocks) during the generation and/or subsequent ascent of magma; and/or (3) different degrees of the oxidation of an H2S-rich, magmatically derived sulfur source ${\delta}^34S = 2$\pm$2$\textperthousand$) during the ascent to mineralization sites. According to the observed differences in ore mineralogy (especially, iron-bearing ore minerals) and fluid inclusions of quartz from the mesothermal-type deposits in both areas, we conclude that pyrrhotite-rich, mesothermal-type deposits in the Youngdong area formed from higher temperatures and more reducing fluids than did pyrite(-arsenopyrite)-rich mesothermal-type deposits in the Boseong-Jangheung area. Therefore, we prefer the third mechanism than others because the ${\delta}^34S values of the Precambrian gneisses and Paleozoic sedimentary rocks occurring in both areas were not known to the present. In future, in order to elucidate the provenance of ore sulfur more systematically, we need to determine ${\delta}^34S values of the Precambrian metamorphic rocks and Paleozoic sedimentary rocks consisting the basement of the Korean Peninsula including the Sobaegsan Massif.

키워드

참고문헌

  1. Desalination v.16 The properties of hydrates of chlorine and carbon dioxide. Bozzo, A.T.;Chen, H.S.;Kaas, J.R.;Barduhn, A.J. https://doi.org/10.1016/S0011-9164(00)88004-2
  2. Geochimica Cosmochimica Acta v.47 Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H₂O-CO₂-NaCl on phase relations in geologic systems: equation of state for H₂O-CO₂-NaCl fluids at high pressures, and temperatures. Bowers, T.S.;Helgeosn, H.C. https://doi.org/10.1016/0016-7037(83)90066-2
  3. American Journal of Science v.281 Analysis of fluid inclusions: Phase equilibria at constant volume. Burruss, R.C. https://doi.org/10.2475/ajs.281.8.1104
  4. Journal of Geological Society of Korea v.30 Hornblende geobarometry of the Mesozoic granitoid in South Korea and the evolution of crustal thickness Cho, D.L.;Kwon, S.T.
  5. Journal of Korean Institute of Mining Geology v.21 Gold-silver mineralization of the Au-Ag deposit at Youngdong district, Chungcheongbuk-Do. Choi, S.G.;Chi, S.J.;Park, S.W.
  6. Journal of Geological Society of Korea v.28 The genetic characteristics of gold and silver vein deposits related to chemical composition of electrum in central Korea. Choi, S.G.;Wee, S.M.
  7. Research on Isotope Geology, KR-90-1B-2 A study of Rb/Sr age determinations on the Kwangju granite in the Kwangju area. Choo, S.H.;Chi, S.J.
  8. Earth-Science Reviews v.52 Tectonic and sedimentary evolution of the Korean peninsula: a review and new view Chough, S.K.;Kwon, S.T.;Ree, J.H.;Choi, D.K. https://doi.org/10.1016/S0012-8252(00)00029-5
  9. Geochimica Cosmochimica Acta v.56 Stability of CO₂clathrate hydrate +CO₂liquid +CO₂vapour +aqueous KCI-NaCI solutions: experimental eletermination and application to salinity estimations of fluid inclusions. Diamond, L.W. https://doi.org/10.1016/0016-7037(92)90132-3
  10. Economic Geology v.80 Chemical evolution and mineral deposition in boiling hydrothermal system. Drummond, S.E.;Ohmoto, H. https://doi.org/10.2113/gsecongeo.80.1.126
  11. Ore Geology Reviews v.18 Orogenic gold and geologic time: a global synthesis. Goldfarb, R.J.;Groves, D.I.;Gardoll, S. https://doi.org/10.1016/S0169-1368(01)00016-6
  12. Zeitschrift Neorganosche Khimii. v.7 Preparation of sulfur dioxide for isotopic analysis. Grinenko, V.A.
  13. Ore Geology Reviews v.13 Orogenic gold deposits: a proposed classification in the context of their crustal deformation and relationship to other gold deposit types. Groves, D.I.;Goldfarb, R.J.;Gebre-Mariam, M.;Hagemann, S.G.;Robert, F. https://doi.org/10.1016/S0169-1368(97)00012-7
  14. Economic Geology v.66 The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure. Haas, J.L., Jr. https://doi.org/10.2113/gsecongeo.66.6.940
  15. Economic Geology v.80 The importance of CO₂on freezing point measurements of fluid inclusions: evidence from active geo-thermal systems and implications for epithermal ore deposition. Hedenquist, J.W.;Henley, R.W. https://doi.org/10.2113/gsecongeo.80.5.1379
  16. Journal of Korean Earth Science Society v.16 Gold-silver mineralization at the Keumsan mine, Boseong-Jangheung area, Cheollanamdo Province: A fluid inclustion and stable isotope study. Heo, C.H.;So, C.S.
  17. Journal of Korean Institute of Mineral Energy Resource Engineering v.36 Gold-silver mineralization of the Jukbo mine, Boseong-Jangheung area, Korea. Heo, C.H.;So, C.S.;Youm, S. J..
  18. Journal of Korean Institute of Mineral Energy Resource Engineering v.36 Oxygen and hydrogen isotope study of the gold-silver mines in the Boseong-Jangheung area. Heo, C.H.;So, C.S.;Youm, S.J.;Kim, S.H.
  19. Journal of Korean Institute of Mineral Energy Resource Engineering v.37 Geochemical environments of gold mineralization in the Boseong-Jangheung area. Chollanamdo-province. Heo, C.H.;Yun, S.T.;So, C.S.;Kim, S.H.
  20. Resource Geology v.46 Gold deposits and their ${\delta}^34S$ ratios of the Sikhote-Alin, Russia-A comprehensive study with those of the Sanyo Belt of Japan. Ishihara, S.;Ivanov, V.;Ratkin, V.
  21. Resource Geology v.50 Source diversity of ore sulfur from Mesozoic-Cenozoic Mineral deposits in the Korean Peninsula region. Ishihara, S.;Jin, M.S.;Sasaki, A. https://doi.org/10.1111/j.1751-3928.2000.tb00070.x
  22. Analysis of Exploration Results: Metallic Ore Deposits. (in Korean) KORES
  23. Mining Geology v.31 Geology and metallic mineralization associated with Mesozoic granitic magmatism in South Korea. Lee, M.S.
  24. Journal of Korean Institute Mining Geology v.18 Sulfur and carbon isotope studies of prinicipal metallic deposits in the metallogenic province of the Taebaeg Mt. region, Korea. Lee, M.S.
  25. Soul Metamorphism of the gneiss complex in the southwestern region of the Sobaegsan Massif. Memoirs in celebration of the sixtieth birthday of Professor Sang-Man Lee Lee, S.W.
  26. Geochemistry of hydrothermol ore deposits Isotopes of sulfur and carbon Ohmoto, H.;Rye, R.O.;Barnes, H.L.(ed.)
  27. Economic Geology v.73 Freezing point depression of aqueous sodium chloride solutions. Potter, R.W.III.;Clynne, M.A.;Brown, D.L. https://doi.org/10.2113/gsecongeo.73.2.284
  28. Review in Mineralogy v.12 Fluid Inclusions. Roedder, E.
  29. Minining Geology v.31 Sulfur isotopes of the ore deposits related to felsic magmatism in the southern Korean Peninsula. Sato, K.;Shimazaki, H.;Chon, H.T.
  30. In Gold '82 The transport and deposition of gold in hydrothermal system. Seward, T.M.;Foster, R.P.(ed);
  31. Economic Geology v.83 Gold-rich mesothermal vein deposits of the Republic of Korea: geochemical studies of the Jungwon gold area. Shelton, K.L.;So, C.S.;Chang, J.S. https://doi.org/10.2113/gsecongeo.83.6.1221
  32. Mining Geology v.31 Mineralization associated with Mesozoic felsic magmatism in Japan and Korea. Shimazaki, H.;Sato, K.;Chon, H.T.
  33. Geochemical Journal v.19 Sulfur isotopic ratios of ore deposits associated with Mesozoic felsic magmatism in South Korea, with special reference to gold-silver deposits. Shimazaki, H.;Sakai, H.;Kaneda, H.;Lee, M.S. https://doi.org/10.2343/geochemj.19.163
  34. Mining Geology v.36 Three epochs of gold mineralization in South Korea. Shimazaki, H.;Lee, M.S.;Tsusue, A.;Kaneda, H.
  35. Journal of Korean Institute of Mining Geology v.26 Mesothermal gold-silver mineralization at the Bodeok mine, Boseong area: A fluid inclusion and stable isotope study. So, C.S.;Yun, S.T.;Kim, S.H.;Youm, S.J.;Heo, C.H.;Choi, S.G.
  36. Journal of Korean Institute of Mineral Energy Resource Engineering v.32 Fluid inclusion and stable isotope studies of gold-and silver-bearing vein deposits, South Korea: Gold-rich mesother-mal mineralization of the Boknae mine. So, C.S.;Yun, S.T.;Heo, C.H.;Choi, S.H.;Youm, S.J.;Choi, S.G.
  37. Mineralium Deposita v.30 Mesothermal gold vein mineralization of the Samdong mine, Youngdong mining district, Republic of Korea. So, C.S.;Yun, S.T.;Shelton, K.L.
  38. Economic Geology v.92 Jurassic mesothermal gold mineralization of the Samhwanghak mine, Youngdong area, Republic of Korea: constraints on hydrothermal fluid chemistry. So, C.S.;Yun, S.T. https://doi.org/10.2113/gsecongeo.92.1.60
  39. Economic and Environmental Geology v.32 Fluid inclusion and stable isotope studies of meso-thermal gold vein deposits in metamorphic rocks of central Sobaegsan Massif, Korea: Youngdong area. So, C.S.;Yun, S.T.;Kwon, S.H.
  40. Geochemical Journal v.36 Geochemistry of the Youngbogari deposit, Republic of Korea: An unusual mesothermal gold-silver deposit of the Youngdong area. So, C.S.;Yun, S.T.;Shelton, K.L.;Zhang, D.Q. https://doi.org/10.2343/geochemj.36.155
  41. American Journal of Science v.260 The system H₂O-NaCl at elevated temperatures and pressures. Sourirajan, S.;Kennedy, G.C. https://doi.org/10.2475/ajs.260.2.115
  42. Mining Geology v.31 Jurassic and Cretaceous granitic rocks in South Korea. Tsusue, A.;Mizuta, T.;Watanabe, M.;Min, K.G.
  43. Petro-graphic provinces of granitoids and associated metallic ore deposits in South Korean Peninsula Reconnaissance study on the fluid inclusions in some Jurassic and Cretaceous granitic rocks in the Republic of Korea. Watanabe, M.;Tsusue, A.(ed.)
  44. Resource Geology v.43 Sulfur isotope study of gold-silver deposits in the Republic of Korea. Yoon, C.H.;Shimazaki, H.
  45. Journal of Korean Institute of Mineral Energy Resource Engineering v.34 Meso-ther-mal gold mineralization of the Mundeok mine, Boseong-Jangheung area Heo, C.H.;So, C.S.;Shim, S. K.