DOI QR코드

DOI QR Code

ON GENERALIZED RICCI-RECURRENT TRANS-SASAKIAN MANIFOLDS

  • 발행 : 2002.11.01

초록

Generalized Ricci-recurrent trans-Sasakian manifolds are studied. Among others, it is proved that a generalized Ricci-recurrent cosymplectic manifold is always recurrent Generalized Ricci-recurrent trans-Sasakian manifolds of dimension $\geq$ 5 are locally classified. It is also proved that if M is one of Sasakian, $\alpha$-Sasakian, Kenmotsu or $\beta$-Kenmotsu manifolds, which is gener-alized Ricci-recurrent with cyclic Ricci tensor and non-zero A (ξ) everywhere; then M is an Einstein manifold.

키워드

참고문헌

  1. Lecture Notes in Mathematics v.509 Contact manifolds in Riemannian geometry D. E. Blair
  2. Publ. Mat. v.34 no.1 Conformal and related changes of metric on the product of two almost contact metric manifolds D. E. Blair;J. A. Oubina https://doi.org/10.5565/PUBLMAT_34190_15
  3. Tensor(N.S.) v.56 no.3 On generalized Ricci-recurrent manifolds U. C. De;N. Guha;D. Kamilya
  4. Ricci tensor in 3-dimensional trans-Sasakian manifolds U. C. De;M. M. Tripathi
  5. Progress in Mathematics v.155 Locally conformal Kahler geometry S. Dragomir;L. Ornea
  6. Ann. Mat. Pura Appl. v.123 no.4 The sixteen classes of almost Hermitian manifolds and their linear invariants A. Gray;L. M. Hervella https://doi.org/10.1007/BF01796539
  7. Kodai Math. J. v.4 no.1 Almost contact structures and curvature tensors D. Janssens;L. Vanhecke https://doi.org/10.2996/kmj/1138036310
  8. Tohoku Math. J. v.24 A class of almost contact Riemanian manifolds K. Kemmotsu https://doi.org/10.2748/tmj/1178241594
  9. Ann. Mat. Pura Appl. v.162 no.4 The local structure of trans-Sasakian manifolds J. C. Marrero https://doi.org/10.1007/BF01760000
  10. Tensor (N.S.) v.51 no.1 A certain locally conformal almost cosymplectic manifolds and its submanifolds K. Matsumoto;I. Mihai;R. Rosca
  11. Colloq. Math. v.57 no.1 Locally conformal almost cosymplectic manifolds Z. Olszak https://doi.org/10.4064/cm-57-1-73-87
  12. Monograph 1 Almost contact metric manifolds R. S. Mishra
  13. Publ. Math. Debrecen v.32 no.3-4 New classes of almost contact metric structures J. A. Oubina
  14. J. London Math. Soc. v.27 Some theorems on Ricci-recurrent spaces E. M. Patterson https://doi.org/10.1112/jlms/s1-27.3.287
  15. Tohoku Math. J. v.21 The automorphism groups of almost contact Riemanian manifolds S. Tanno https://doi.org/10.2748/tmj/1178243031
  16. Nepali Math. Sci. Rep. v.18 no.1-2 Trans-Sasakian manifolds are generalized quasi-Sasakian M. M. Tripathi

피인용 문헌

  1. ON A CLASS OF THREE-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS vol.27, pp.4, 2012, https://doi.org/10.4134/CKMS.2012.27.4.795
  2. A Class of Lorentzian α-Sasakian Manifolds vol.49, pp.4, 2009, https://doi.org/10.5666/KMJ.2009.49.4.789
  3. Harmonic Almost Contact Structures vol.123, pp.1, 2007, https://doi.org/10.1007/s10711-006-9112-x
  4. Trans-Sasakian Manifolds Homothetic to Sasakian Manifolds vol.13, pp.5, 2016, https://doi.org/10.1007/s00009-015-0666-4
  5. A note on trans-Sasakian manifolds vol.63, pp.6, 2013, https://doi.org/10.2478/s12175-013-0176-4