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CONSTRUCTION OF UNBOUNDED
DIRICHLET FORMS ON STANDARD FORMS OF
VON NEUMANN ALGEBRAS

CuanNgsoo Baun* aAND CHuL K1 Ko**

ABSTRACT. We extend the construction of Dirichlet forms and Mar-
kovian semigroups on standard forms of von Neumann algebra given
in [13] to the case of unbounded operators affiliated with the von
Neumann algebra. We then apply our result to give Dirichlet forms
associated to the momentum and position operators on quantum
mechanical systems.

1. Introduction

Recently Cipriani developed the theory of noncommutative Dirichlet
forms and Markovian semigroups on standard forms of von Neumann
algebras [6]. Employing this theory, Park made a general construction
method of Dirichlet forms for any bounded analytic elements [13]. The
purpose of this work is to extend the construction method to unbounded
elements.

In order to describe the content of this paper, let us recall the con-
struction method of Park [13]. For a von Neumann algebra M acting
on a Hilbert space H with a cyclic and separating vector & for M,
let (M, H,P,J) be the natural standard form and o; be the modular
automorphism associated with the pair (M, &) [4]. For any admissi-
ble function f (Definition 3.3) and any bounded self-adjoint analytic
element z in M, the author constructed a (bounded) Dirichlet form

Received April 3, 2002.

2000 Mathematics Subject Classification: 47D07, 46L57, 82C10.

Key words and phrases: Dirichlet forms, unbounded operators, Markovian semi-
groups, standard forms of von Neumann algebras.

“Supported by Korea Research Foundation (2001-005-D00010).

**Supported by the Brain Korea 21 Project in 2001.



932 Changsoo Bahn and Chul Ki Ko
E(-,+) : H x H — C of the following type:

M) EEn = [(oryale) - do @),
(0t—ija(x) — Jlot_isa(x)))n) f(t) dt.

In this paper we extend this method to unbounded operator = affili-
ated to M satisfying Assumption 3.1. The problem is how to give mean-
ing the term o,_;/4(z) for the unbounded operator z. To overcome this
problem, we approximate z using the spectral decomposition of |z| (see
(3.6)). Assumption 3.1 means that in case z is symmetric, the cyclic and
separating vector & belongs to the domain of 22, i.e., & € D(z?) (Re-
mark 3.2). This assumption enables us to give the meaning of o;_;/4(x)
(see (3.14)) and establish the form &£ given by (3.3) on suitable dense
domain. Our main result (Theorem 3.4) is that this extended form is a
(unbounded) Dirichlet form which generates a Markovian semigroup on
H.

As an application of this extended method, we consider the von Neu-
mann algebra £(h) of all bounded operators on § = L?(R,dz) and the
faithful normal state w on L(h) given by w(A) = Tr(pA) with den-

sity operator p = T—:W, [ > 0 where the Hamiltonian operator

H = —%A + V. When the potential V is a real valued bounded below
polynomial satisfying (4.1), we construct a Dirichlet form associated
with the momentum operator P or the position operator @@ (Theorem
4.5).

Many papers have been devoted to study of quantum Markov semi-
groups and noncommutative Dirichlet forms [6, 7, 8, 9, 10]. Although
we have quite well developed theory on an abstract level, the progress
in concrete application (especially on the von Neumann algebras with
non-tracial states) is slow. We would like to mention a few recent works
in this direction. Majewski and Zegarlinski used the generalized con-
ditional expectation to construct generators of spin-flip type dynamics
for quantum spin systems [11, 12]. As mentioned before, Park gave
a general construction method of Dirichlet forms on standard forms
of von Neumann algebras and applied the method to construct trans-
lation invariant Markovian semigroups for quantum spin systems [13].
Quantum-Ornstein-Uhlenbek semigroups were constructed by means of
noncommutative Dirichlet forms in [5]. It should be mentioned that the
form defined in [5] is a special case we have made (see Remark 4.6). In
[2, 3], the authors constructed Dirichlet forms and associated Markovian
semigroups on CCR and CAR algebras with respect to quasi-free states.
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We organize the paper as follows. In section 2, we briefly review the
theory of noncommutative Dirichlet forms and Markovian semigroups in
the sense of Cipriani [6]. In section 3, for closed unbounded operators
satisfying Assumption 3.1, we construct the noncommutative Dirichlet
forms using the limiting processes. In section 4 we apply the result in
Section 3 to construct Dirichlet forms on quantum mechanical systems
(Theorem 4.5).

2. Review on noncommutative Dirichlet forms

In this section we briefly review on the theory of Dirichlet forms and
Markovian semigroups on standard forms of von Neumann algebras. For
details, we refer the reader to [6].

Let M be a o-finite von Neumann algebra acting on a complex Hilbert
space H. That is equivalent to the existence of a faithful normal state on
M or to the existence of a cyclic and separating vector in some faithful
representation of M. A self-dual cone P in H is a subset satisfying the
property

{€eH:{&n) >0, VneP} =P.

Then P is a closed convex cone and H is the complexification of the real
subspace H” = {£ € H : (¢,n) € R, ¥n € P}, whose elements are called
J-real: H = H’ @ iH’. Such a P gives a rise to a structure of ordered
Hilbert space 7’ (denoted by <) and to an anti-unitary involution J
on H, which preserves P and H’: J(& +in) := £ —in, V&n € HY.
Any J-real element ¢ € H” can be decomposed uniquely as a difference
E=¢, —€&, &,6_€Pand (£,6-)=0.

A standard form (M, H, P, J) of the von Neumann algebra M acting
faithfully on the Hilbert space H consists of a self-dual, closed, convex
cone P in ‘H and the anti-unitary involution J satisfying the following
properties:

(a) JIMJ = M/,

(b) JAJ = A*, YAe Mn M

(c) JE=¢, VEeEP;

(d) AJAJ(P) Cc P, VYAec M,
where M’ is the commutant of M, i.e., the set of all bounded operators
on ‘H commute with each A € M.

The semigroup {73 }+>¢ on H is said to be J-real if TyJ = JT; for any
t > 0 and it is called positive preserving if TP C P for any t > 0. Let us
fix a cyclic and separating vector & in P. The semigroup {7} }:>o is said
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to be sub-Markovian (w.r.t. &) if 0 < & < & = 0 < Ti¢ < & for any
t > 0. The semigroup {T; }+>¢ is called Markovian if T; is sub-Markovian
and Ty&y = & for any £ > 0.

Next we consider a complex valued sesquilinear form £ defined on
a dense domain D(€) in H: £(-,-) : D(£) x D(£) — C and also the
associated quadratic form £[-] : £[¢] = £(£,€), V€ € D(€). If E[E] > 0
for all £ € D(E), £ is called positive, and if £[¢] > —b||€]|? for some b, we
say that & is semi-bounded. For a given semi-bounded quadratic form
£, one considers the inner product given by (£,m)x = £(&, 1) + A&, n)
for A > b. The form &£ is closed if D(E) is a Hilbert space for some
of the above norms. The form £ is called closable if it admits a closed
extension.

Associated to a semi-bounded closed form &, there is a unique self-
adjoint operator K such that D(K) C D(£) and for n,& € D(K)

(2.1) £, &) = (n, K¢&),
and a strongly continuous semigroup
(2.2) T, =e K
on H.
The quadratic form (€[-], D(£)) is said to be J-real if
(2.3) JD(E) c D) and E[JE] = E[E]

for all £ € D(E).
Let Proj(¢,Q) be the projection of £ € H” onto the closed convex
set Q@ C HY and for &, € H” define

(2.4) Evn = Proj(&,n+P),
EAn := Proj(&n—-"P).

DEFINITION 2.1. A J-real, positive, densely defined quadratic form
(€,D(£)) is called Markovian w.r.t. & € P if

¢eDE)NH’ implies A& € DE) and E[EA &) < E[E]
equivalently if §o € D(€) and £(£0,§) >0 for all £ € D(EYNP
and

¢eDE)NH! implies €€ DE) and E(&4,6-) <0.
A closed Markovian form is called a Dirichlet form.

The following is one of the main results in [6], which is the character-
ization of sub-Markovian semigroups associated to Dirichlet forms with
respect to & € P.
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THEOREM 2.2. (Theorem 4.11 of [6]) Let (£, D(E)) be a J-real, posi-
tive, densely defined closed form and let {T;};>o be the associated J-real
strongly continuous, symmetric semigroup on H. Then the following
conditions are equivalent:

(a) & is a Dirichlet form;
(b) {Ti}s>0 is sub-Markovian.

REMARK 2.3. In particular if {T}}+>0 is sub-Markovian and K&, =0
then it is Markovian.

3. Construction of Dirichlet forms: main results

In this section we construct Dirichlet forms on the natural standard
forms of von Neumann algebras with any unbounded operators satisfying
Assumption 3.1. The forms generate Markovian semigroups.

Let M denote a o-finite von Neumann algebra acting on a Hilbert
space H with the inner product (-,-), anti-linear and linear in first and
second variable respectively. Let & be a cyclic and separating vector
for M. We use A and J to denote respectively, the modular operator
and the modular conjugation associated with the pair (M, &). The
associated modular automorphism group is denoted by o : o:(A4) =
A*AA=™ A € M. Also j : M — M’ is the antilinear *-isomorphism
defined by j(A) = JAJ, A € M, where M’ is the commutant of M.
The natural positive cone P associated with the pair (M, &) is defined
as the closure of the set

{Aj(A)o: Ae M}

Then the form (M, H,P,J) is the standard form associated with the
pair (M, &p). Denote by w a vector state on M associated with & :
w(A) = (&, A&), A € M. Clearly w satisfies the KMS condition [4]. For
details we refer to Section 2.5 of [4].

Throughout this section, we assume that = satisfies the following
properties.

AssumPTION 3.1. (a) z is a (unbounded) densely defined closed op-
erator affiliated to M;
(b) & belongs to the domains of |z|> and |z*|?, ie., & € D(jz[*) N
D(|z*|?), where £y € D(A?) means & € D(A) and A& € D(A).
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REMARK 3.2. If z is a symmetric operator, then the condition (b) of
Assumption 3.1 is equal to £y € D(z?). Let us mention that we will con-
sider a (unbounded) closed operator = which is not necessary symmetric
(see Remark 4.6).

In order to express Dirichlet forms, let us introduce the notion of an
admissible function[13].

DEFINITION 3.3. [13] An analytic function f : D — C on a domain

D containing the strip Im z € [—1/4,1/4] is said to be admissible if the
following properties hold:

(a) f(t) >0 for Vt € R;

(b) f(t+1i/4) + f(t—i/4) >0 for Vt € R;

(c) there exist M > 0 and p > 1 such that the bound

|f(t+is)| < M(1+t])P
holds uniformly in s € [—1/4,1/4].

Let us mention that the function f(t) defined by
f(t) _ _\/22: /(ek/4 + e—k:/4)—1€v%k2€—-ikt dk
s

is an admissible function [13].
Next, we introduce a dense subset of H. For any B € M and m € N,
define B,, by

(3.1) B = \/—g / o.(B)e™™ dt.

Then B,, is an entire analytic element for oy, ||Bn| < ||B]l Ym € N and
B, — B strongly as m — oo. In fact

(3.2) 0.(Bm) = \/? / oy(B)e™t=2) gy

is well defined for all z € C and for each m € N, z — o,(B,;) is strongly
analytic. See the proof of Proposition 2.5.22 in [4]. Denote

Mg := the *-algebra generated by B,,, VB €¢ M, Vm € N.

Since & is a cyclic vector for M and B,, — B strongly, M& is a dense
subset in H.

For given admissible function and any o-analytic (bounded) self ad-
joint operator, Park constructed a noncommutative Dirichlet form [13].
Extending the method, we would like to construct noncommutative
Dirichlet forms with any unbounded operator z satisfying Assumption
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3.1. We denote by z# either = or z*. Notice that = is an unbounded
closed operator affiliated to M and & € D(z) N D(z*). We are able to
choose z, € M, ¥n € N such that z,£p — =€ and again os-analytic
elements x,, € Mg, Vn,m € N (see (3.7) and (3.9)). By the limiting
processes we define o;.; /4(3:#), YVt € R on a suitable domain containing
the dense set My&y(see Corollary 3.8 and (3.14)).

We are ready to describe the Dirichlet forms. For given admissible
function f and a closed operator z satisfying Assumption 3.1, define a
sesquilinear form (&, Mo&) by

D(&) = Mopéo,
B3 Een) = [ i@ =iy
(Orijal®) — §(Teiyala™)))m  (B)dt
+ (o inle) ~ Hon@

(o1_ija(z™) — F(op—isalz)))n) f(t)dl

for any £, € M. Also we define the associated quadratic form &[]
by

(34) £l = / 1(Groi/a(x) — 3(oeija(@))EIRF (D)t
+ / 10y (@*) — 3(Gs—sja(@))EIRf ()

for any € € Mg&y. For each n,m € N, let (Enm, H) be the form given by

Eun€n) = [ (i @) = Soriya(im)E
(3.5) (04—ija(Tnm) — 3(Te—isa(@nm)))n) f()dl
+ o i) = i(oria@m)e,
(s s(Tom) — Orisa(@am))IM) F D,

where z¥,, has been defined in (3.9) and (3.7). Since Thn € My, it
follows from Theorem 3.3 of [13] and Theorem 2.1 of [2] that (Enm, H)
is a Dirichlet form for each n,m € N. We will show that £(&,n) =
nlin;c mlgmoc Enm(&,m) on the domain Mp&p (Lemma 3.9).

Now we state main result. The form (€, Mo&p) given by (3.3) is well
defined (Lemma, 3.9) and closable (Proposition 3.12).
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THEOREM 3.4. For given admissible function f and a closed operator
x satisfying Assumption 3.1, let (£, My&y) be defined as in (3.3). Let
K be the self adjoint operator associated with the closure (€, D(E)) of
(€, Mo&o). Then the following properties hold:

(a) & € D(K) and K& = 0;

(b) € is J-real, i.e., E[JE] = E[€],VE € D(E);

(c) E(64,62) <0 for VE€HIND(E).

Furthermore the form (€, D()) is a Dirichlet form.

By Theorem 2.2 and Theorem 3.4 the semigroup {7} }s>0, T; = etK
associated to the Dirichlet form (€, D(€)) is Markovian.

Let us briefly describe the basic idea of the proof of Theorem 3.4. We
divide it into three steps. As mentioned before, we first give the meaning
of 0y_;/4 (z#) on a suitable domain (Corollary 3.8 and (3.14)), and show
that the form (€, Mo&p) defined as in (3.3) is well defined (Lemma 3.9).
Secondly by obtaining a positive symmetric operator K on Mgép such
that £(&,n) = (&, Kn) &, n € M€, we prove that the form is closable.
Finally we prove that the closure of (£, My&p) is a Dirichlet form. It
should be mentioned that in the final step we used the argument similar
to that of [2].

Let us establish the first step. The closed operator x has the polar
decomposition z = Ulz| and the spectral decomposition of |z

00
(3.6) 2] = / AP,
For each n € N, define the operatois yn and z, on 'H
(3.7) - / " AP,

Ty = Upyn

Since z is affiliated to M, for all n € N the operators U, y, and z,
belong to M.

Let us establish technical results which will be used in the sequel. In
the following, A# means either A or A*.

LEMMA 3.5.  The following properties hold:
(a) & € D(z) N D(z");
(b) limpo 2 €9 = z#&;
(c) limn_,oo(x#)*xffo = |z%|2&;
(d) limp mosoo (zF — 28)* (2 — 2)go = 0.
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Proof. The lemma follows from Assumption 3.1 and the spectral the-
orem. U

LEMMA 3.6.  The inclusion Mo& C D(z) N D(z*) holds, and
lim z#¢ =at¢, €€ Mo&.
n—oo

Proof. Let § = A§p, A € M. Notice that § = j(o_;/2(A*))é and

€ = :Enj(a'~i/2(A*))§0
(3.8) = Jj(o_ij2(47))Znéo-
It follows from (3.8) and Lemma 3.5(b) that

lim zp{ = j(o_i/a(A%))zéo

n—oc
= zj(o_i2(47))é0
= zé.
Here we have used the fact that z is affiliated to M. Also the method
used above gives the result for z*, ]

Recall the definitions of z,,y,, Yn € N in (3.7) and A# is either A
or A*. Define the operators 2, by

(3.9) [/ot e ™ dt, n,m=1,2,-
[4]

It is easy to check that

(3.10) :cnm EMpy, n,m=1,2,--.

and (Lemma 3.6)

(3.11) lim lim xnm§0 = z#¢.
n—oo m—

To give the meaning of o,_; /4(x#), we need next results.
LeMMA 3.7. (a) Let C = max{||z&||, ||z*&ol|}. The inequality

(3.12) los—isa(ztn)éoll < C

holds uniformly int € R and n,m € N.
(b) For any t € R, lim lim O't_i/4(.'1,‘#m)§0 exists.
n—0o00 m—oc
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Proof.  (a) Notice that ||[zZn&l < llz#&l < C, n,m=1,2,---
and A&y = &. We obtain that

log—isa(atn)éol® = (z,&0, A2zt o)
= (zfnbo, I () o)
< lafabolll(220) 6ol
< C2

(b) Using (3.13), we obtain that for n,m,l,k € N

(3.13)

1s—i/a (2Fom)E0 — 01374 (] )60
< (et — 260l (e — 2})* ol
The part (b) of lemma follows from the above result and (3.11). O

COROLLARY 3.8.  (a) For any £ € Mg&, there exists a constant Cg
independent of t € R and n, m € N such that
lov—isa(z,)El < Ce.
(b) For any £ = Ay, A € Mgy andt € R, lim lim at_i/4(mfm)§ exists
n—o00 Mm—0o0
and
Um lim oy ()6 = j(0_ip(A%)) lim lim o, (z%,,)é0.

n—oc m—oo n—o0 Mm—oe

Proof. 1t follows directly from the Lemma 3.7 and the relation
(3.8). a

Now we define the operators atwi/4(x#) for each £ € R by
(3.14) D(at_i/4(;c#)) ={£e M : nh_}rgo n}imoo at_i/4(x#m)£ exists},
os_isa(z?)E = nll{go W}L{HOO or—ija(zl,)€, €€ D(oy_ia(z?)).

By Corollary 3.8 (b), Moo C D(04—;/4(x*)) and so at_i/4(ac#) is densely
defined. Also we have that

3(0p—ija(x¥))E = Jim n}i_{nooj(fft—f/z;(wfm))ﬁa ¢ € D(0y_ija(z™)).

LEMMA 3.9. For any &, n € Mgy,
(3.15) EEm) = lim lim &,(€,n).

Proof. The lemma follows from Corollary 3.8, (3.14) and the domi-
nated convergence theorem. OJ
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The following lemma will be used in the proof of Proposition 3.11.

LEMMA 3.10. For any A € My, the limit
lim lim (2%,)*Ao_ e ()
n—00 Mm—0C

exists.
Proof. Notice that x#m € Mg, Vn,m € N and for each n € N
lim ot (ot = )6
We write that for A € Mg and n,m,l,k € N
(3.16) |z Ao_ijo(Tnm)éo — T AT_; oz )éol|

< [(@nm — 3jll’c)*AU—i/Q(33n7n)§0” + ||:Eka0_,;/2(a:nm — zu)éol|
= A1+ Ao

Applying the KMS condition to A; and using Schwarz inequality, we
obtain that

A% = w(o-i/2(x;klm)A*($nm - xlk:)(xnm - xlk)*Aa—i/2(xnm))
— u)(A* (l’nm — CL'lk)(l'nm - xlk)*AU—i/2(m"m$;;m))

< w(A(Zwm — i) (Tam — xlk)*)2A)1/2
‘W(Ui/2 (fcnmx:nn)A*AU—iﬂ (xnmw;:um))l/2
< @nm — i) (Tnm — zik) " Abolll| Alllo s /2 (TrmTrm)Eoll
(3.17) < [A[llli(o—i2 (AN (Zam — Zik) (@nm — ziw)*Eolll|TnmermEoll-

Here we have used A&y = j(o_;/2(A%))éo and j(o_;/2(A*)) € M. If m
and k tend to infinity, the right hand in (3.17) converges to

(3.18) IAN7 (o —i2 (AN (T0 — ) (@0 — 1) Eo |20z 0]l

It follows from Lemma 3.5 (c), (d) and (3.18) that

lim lim A;=0.

n,l—ocm, k—oo
By the similar calculation we have

lim lim As=0.

n,l—ocm, k—oo
Also the method used above gives the result for z,,,. O
In order to show that the form (£, My&p) is closable, we introduce a

densely defined positive operator K such that £(¢,n) = (£, Kn), £,n €
Moéo.
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PROPOSITION 3.11. The operator K on Myéy defined by
K¢= lim lim K,n€, €€ Mp&
n—00 M—r9o0
is densely defined, symmetric and positive, where

(319) Kpm = 797)1 + Ky(l'zn)l7 n,m=12,---,

KD = [ osipal@imoniysmum) 1002
[ 3 @) i (eriga(eam)) ) O
~ [ i (@salanm)) N
o LR ) S NES I

and Kg% defined replacing xn,, by z,, in K,(l%)q .
Proof.  Notice that for any £ € Myép, n,m € Nand 2 € C

(3.20) z = 0 (Tam)E,
z = j((02(zam))*)E

are strongly analytic. Using Corollary 3.8 and Cauchy integral theorem,
we obtain that for fixed n,m € N, § = A&y = j(o_;/2(A"))&, A €
MO; ne H

(n, Kipé) = / (1,50 _s/2(A"))0e(T 1) T2 (@ )&0) £ (£ — i/4)dt
+/<77aAJUt(mnm)at—i/2(x:zm)€0>f(t+i/4)dt
(3.21) - /<77’ Ot (m;m)AUt—iﬂ (Tnm)60) f(t —i/4)dt

- / (1, 0 ) Ao (£ )E0) F (£ + 1/4)d.
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Comparing (3.19) with (3.21), we get that for any £ = A&y, A € My
KD = [ 30 ipAor(aim)onsalamm)bo £0 - i/4)dt
+ / AJoy(Tnm)ot—if2(Tnm)o f(E +i/4)dt
(3.22) ~ [ o) Ace ija(nm)bo 1t~ i/t
= [ ouwnm)Ao, ipa(winto £t + /)t

It follows from Lemma 3.10 and the definition of admissible function
that there exist
lim lim K,S},{g, & € Moo

n—oa m—oe
and also
lim lim K¢ € e Mob.

n—00 mMm—0C
Since Mo& is dense, K is densely defined. Clearly we have (K,,,,&,n)
= (¢, Kypmn) for any £, n € M&g, which implies that (K§,n) = (£, Kn)
for any £, n € Mp&. Also it follows from (3.3) and (3.19) that

(£, Kn) = E(&,n) forany &,n € Moko.

This implies that K is a positive operator on Mg&y. Therefore K is a
symmetric and positive operator on Mgép. O

PROPOSITION 3.12. The form (€, Moép) defined as in (3.3) is closable.

Proof. By Proposition 3.11, K is a positive, symmetric operator on
Mpéo and E(&,7m) = (€, Kn) for &, n € Mo&o. Thus (€, Mp&p) is closable
by Theorem X.23 of [16]. O

Denote by (£, D(€)) the closure form of (£, Mo&). In order to show
that the form is a Dirichlet form, we need the next lemma.

LEMMA 3.13. For any &£ € MpéoN'HY, €., ¢6_ € D(E) and
E[¢x) = lim lim Enm[fi]

Nn—00 mM—>

Proof. Let £ = Ay, A € My. Let s; and s_ be the projections onto
M€, and M'E_ respectively, where s, s_ € M. See Theorem 4.7 of
(1]. We write that

€m,+ = (sxA)méos

(8+A)m =4/ — /ot stA)e —mit? gy
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Notice that ||(s+A)m|l < 4], m € N and that for any n € H, (s+A)mn
— s+ An as m — o0o. See also the proof of Proposition 2.18 in [4]. Since
A"P C P for all t € R, we get that for each m € N

(3'23) gm,:i: = (siA)mfo = j((S:!:A)m)fm
which implies & + € Mo&y C D(£) and

(3.24) 0t-i/a(@®)emt = J (52 A)m)oyisa(a®)o.

Notice that &, + — £+ as m — oo and the form £ on Mé; is closable.
By (3.24), the dominated convergence theorem and (3.3), we obtain that
Elm,+ — & +] — 0 as m, m' — oo, which implies &4, £ € D(E).

Next we will prove that Ep,,[€4] converges to £[€+] as m,n — oo.
Define 5(Ut—i/4(x#)) on D(Ut—z‘/4(93)) N D(Ut—i/4(x*)) by

5(0t—i/4($#)) = Ut—z‘/4($#) - j(at—i/fl(z#))'
By the definition of 6(at_i/4(:v#)) and &y = s1 A&y = j(s+ A)&y, we have
the facts that &1 € D(0y_;/4(2)) N D(0y—i/4(z*)) and 8(oy_;/4(z#))€x =

j(siA)Ut—i/4(x#)€0 - (SiA)j(Ut—i/4(($#)*))£D-
Using Corollary 3.8 and the above relations we conclude that there
exists a constant C7 > 0 such that the bound

(3.25) 16(0e—ipa (22l + 18(a1—isa(a¥))Es]| < Co

holds uniformly in n,m € N and ¢t € R. It follows from (3.25) and
Corollary 3.8 that

|Enm[Ex] — E[€4]]
< 2G4 / 10(0¢—i/a(@Tnm))6x — 6(0s—i/a(@))Ex £ (t)dt

< 0 / 104 () — G /a(@))Eoll ()t
— 0 asm,n — o0.

Here we have used Lemma 3.7 and the dominated convergence theorem.
Thus the proof is completed. O

Proof of Theorem 3.4 (a) Notice that for each n,m € N,

3(o1—i7a((Thn)¥))) &0 = or—ija(zt ) 6o,

which implies K,nm& = O(see (3.19)). The part (a) follows from the
above facts and Proposition 3.11.
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(b) Since M is a form core, it is enough to consider £ € Mp&y. We
have known that JA& = o_;/3(A*)é € Moéo, A € My. So £ € Mo&o
implies JE€ € Mo&. A direct calculation shows that for any £ € Mo&p,

(Ut—i/4($#m) - j(at—i/4(($#m)*))) JE

= J(j(os—i/a(z)) — Ut—i/4(($#m)*))§-
Using the above relations and (3.3), we get that for any £ € M
el = Efgl-
(c) Let € € H/ND(E) be given. Choose a sequence {&x} C Mo&NH’
such that & — €inH and £[§,—§] — 0as k, | — oo. Since ||+ —&+]| <

€ —€| and €] = €4 +&— (Proposition 1.2 in [7]), we have that |£] — [¢]
as k — oo. Furthermore by Lemma 3.13

Ell&]] = lim lim Enpm[|€kl]

n—0C Mm—od

for all k € N. Notice that £(€4,£_) < 0 is equivalent to E[|€]] < E[¢].
Since Zpm is a op-analytic element, &,y satisfies for all n,m,k € N,
Enmll€kl] < Enml[éx] by Theorem 3.3 of [13]. By the lower semi-continuity
of £, we get that

Elel] < Jim infE{g
lim inf lim lim Eppm[|€kl]
k—oc n—r00 M—00

lim inf lim lim &um[€k]
o0 M—00

klim E&]
= £[¢]
Thus |£] € D(£) and E[|€]] < £[¢]. This completes the proof of the

property (c).

Since £[] > 0 and £(£,&) = 0, V€ € D(E), by Proposition 4.5 (b)
and Proposition 4.10(ii) of [6], the properties (b) and (c) imply that
(€,D(£)) is a Dirichlet form. O

IA

4. Applications

In this section, we denote by b the separable Hilbert space L*(R, dz),
i.e., h = L?(R,dz), where dx is the Lebesgue measure on R. Let H =

—%A + V as an operator on h, where A = d%zg is the Laplacian for
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the variable z € R and V is a real valued polynomial satisfying the
condition:

(4.1)  there existk > 0, ¢ € R such that V(z) > kz? + ¢, Vz € R.

Then H is a semi-bounded self adjoint operator with the core C§°(R),
the space of the continuous functions vanishing at infinity with compact
support (Theorem X.38 in [16]), and for any 8 > 0, e~ is an invertible,
trace class operator on f (Theorem 9.2 in [17]).

Now the von Neumann algebra of all bounded linear operators on §
is denoted by L() and the faithful normal state w on L(h) is given by

(4.2) w(A) = Tr(pA), AeL(h),
e PH
? T Ty

The modular group is given by o;(A) = pAp~*, A € L(h). The state
w satisfies o;-KMS condition [4].

With the aid of the faithful normal state w, the space £(§) may be
converted into a pre-Hilbert space by the inner product

(A, B) = w(A*B) = Tr((Ap*/?)*(Bp*'?)), A, B € L(§).

The completion of this space is defined as the representation space H,,.
Next let us consider the definition of the representative m,(A) of A €
L(h). We specify their action on the dense subspace of H,, by

mo(A)B = AB, A,B € L(y).

Clearly ,,(A) is a linear operator on £(h) and ||, (A) B||x., <||All|| Bll#., -
Hence 7,,(A) has a bounded closure, which we also denote by m,,(A). m,
is a homomorphism on £(}), i.e., 7, (AB) = n,(A)m,(B), A,B € L{H).
Denote by & = 1 and M = 7,(L(H))”, and this gives the correct iden-
tification of w:

<§077Tw(A)£0> = w(A)7 Ae ‘C(b)

(Hw, Tw, &) is the cyclic representation of (L£(f),w)[4]. From now on we
suppress w and 7, from notations. Thus H := H,, A := 7,(A4) and
oy := m,(0¢). & is a cyclic and separating vector for the von Neumann
algebra M.

We next introduce unbounded operators on H. Let X be a closed and
densely defined operator on h with domain D(X). Its adjoint operator
X* is then also closed and densely defined. For each A € L(h), XA
is closed, but not necessarily densely defined. If XA is bounded then
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X A&y belongs to H. We define an (unbounded) operator m(X) on H as
follows:

(4.3) Do(n(X)) ={A¢ e H:XAis bounded on b, A € L(h)};
m(X)Aé = XAy, A& € Do(m(X)).

The following lemma gives the meaning of m(X) as a densely defined
operator on H.( See also Lemma 2.1 of [5]).

LEMMA 4.1. Let X be a closed and densely defined operator on .
(X defined as in (4.3) is closable and densely defined. Denote also by
7(X) the closure with domain D(n(X)). The closure w(X) is a closed
and densely defined operator on H affiliated to M, and n(X*) C w(X)*.
Moreover if X p/* is a bounded operator on § then & € D(n(X)).

Proof. Since D(X) is dense in §, we can choose a Hilbert basis ¢ =
{¢n} for b contained in D(X). The linear space Cpo([¢]) generated by
the operators {¢n, )dm, n,m € N is a weak* dense subspace of L(h)
whose norm closure is the Banach space of compact operators on §.
This implies that Coo([¢])éo is dense in H. Clearly X{¢n, )dm is an
everywhere defined bounded operator on §, which implies Coo([¢])&0 C
Dy(m(X)). Hence 7(X) is densely defined on H.

If A&y € Do(m(X™)), B& € Do(n(X)) then X*A, XB and A*XB
are bounded operators on . But (X*A)*B extends the everywhere
defined operator A*X B, so the two operators must coincide, and we have
(Ao, m(X)B&) = Tr((Ap'/?)* (X Bp'/?)) = Tr((X*Ap'/?)*(Bp'/?)) =
(m(X*)A&, B&). It follows from the density of £(f) in H and the
definition of 7(X) that n(X)* D #(X*). Therefore n(X)* is densely
defined, so 7(X) is closable.

The affiliation properties easily follow from the fact that the commu-
tant algebra M’ is {n'(B) € L(H) : 7/(B)A¢, = AB¢&y, A,B € L(h)}.

To show the last statement, we consider the polar decomposition
X = U|X]| and the spectral decomposition of | X|

o0
1X| = / AdPy,.
0
For each n € N, define the operators e, on §

n
en:/ dP)\
-n

and X, = Xe,. Clearly e,&; belongs to Dy(m(X)) and e,&p — & in H.
Note that p'/4 is a trace class operator and X pl/ 4 is bounded. Applying
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the fact
(4.4) (Xn — )(m)pl/2 = ((Xn — Xm)p1/4)p1/4,

we have that T7(((Xn — Xm)pY2)* (Xn — Xm)p*/?)) converges to 0 as
n,m — oo. Thus m(X)e,& converges in H. Since 7(X) is closed & €

D(n(X)). O
Let P and @ be the self adjoint operators on h given by
(45) (P1)(@) = e f(@), (Qf)(x) = 2f(2)

with common core C§°(R). Then by Lemma 4.1, n(P) and n(Q) are
densely defined, unbounded closed symmetric operators on H affiliated
to M.

In order to show the Proposition 4.3, we will use the lemma listed
below. The following lemma is well known to experts. (See the example
of p.270 in [16].)

LEMMA 4.2. There exists a positive constant « such that the following
inequality holds:

(4.6) (=N + V2 < (=A+V +0l)?
as quadratic form on C§°(R). Moreover —A(—A+V+al)~! and 2%(— A+

V + 1)~ ! are bounded on b, where x? stands for a multiplication op-
erator on .

Proof. Since V is a real valued bounded below polynomial we can

choose a constant & > 1 such that
2

(4.7  V(z)>-a/4, V(z)+a/4>V"(z)(= %Z—V(JJ)), Vz € R.
Let V; =V + a/2. Then Vi(z) > 0 and V2(z) > V2(z) for all z € R.
By a simple calculation, one gets that

(M8)  (CBHWP = (AP A Vi)~ VY

dz
> (—AP+VvE -V,

where V) and V]’ stand for multiplication operators on . Notice that
—A +V + al has an inverse. It follows from (4.7) and (4.8) that

(—A+V+al)? = (—A+W)?+a(=A)+ai +%1)

Y

(AP + V= V' + (Vi + S1)
(=N + V2

V



Unbounded Dirichlet forms 949

The above fact and (4.1) imply that —A(=A+V +al1)~! and z2(-A+
V 4+ al1)~! are bounded on §. a

Since the potential V' is a polynomial satisfying (4.1), for each § > 0
and n € N, the kernel of e % is n-times differentiable and decays expo-
nentially at infinity [15]. So for f € C§°(R), w”e‘ng and (i—j;)"e"ng
are continuous functions on R. In fact they are everywhere defined on

b.

PROPOSITION 4.3. Let 3 > 0 and n = 1,2. The operators z"e 1
(—iad;)"e_BH are bounded and also Hilbert Schumidt class. Here z"
stands for a multiplication operator on b.

Proof. The boundedness of operators directly follows from Lemma
4.2. The method used in (4.4) gives that the operators are Hilbert
Schumidt class. ]

Actually Proposition 4.3 holds for arbitrary n € N. One can prove
it modifying the path integral method used in the proof of Proposition
4.1 in [14] or Proposition 2.6 in [15]. But we need only n = 1,2. The
following proposition gives us the operators on H satisfying Assumption
3.1.

PROPOSITION 4.4. £y belongs to the domains of |m(P)[?, |x(P)*|?,
(@)1 and |n(Q)*|*.

Proof. By Remark 3.2 and the symmetricity of w(P), &, 7(P)& €
D(n(P)) is equivalent to & € D(|x(P)|?) N D(|m(P)*|?). It follows from
Proposition 4.3 that for each n = 1,2, Tr((P"p'/2)*(P"p'/?)) is finite.
Hence by (4.4) and the closability of m(P), &, m(P)& € D(n(P)). Also
the method used above gives & € |7(Q)|? = |7(Q)*|?. O

We have showed that the unbounded operators 7(P) and 7(Q) satisfy
Assumption 3.1 from Lemma, 4.1 and Proposition 4.4. Using the method
developed in Section 3 we construct the Dirichlet forms and Markovian
Semigroups on the standard form of M.

THEOREM 4.5. For given admissible function f and a closed operator
w(P) or w(Q) given as in (4.3) and (4.5), let (£, Moéo) be defined by
changing z into w(P) or 7(Q) in (3.3). Let K be the self adjoint operator
associated with (£, D(£)). Then the following properties hold:

(a) §o € D(K) and K& = 0;

(b) € is J-real, i.c., £[JE] = E[€];

(c) E(EL,6.) <0 for VEe HIND(E).
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Furthermore the form (€, D(£)) is a Dirichlet form.

REMARK 4.6. Let us discuss the Harmonic oscillator. We consider
the potential V(z) = 322 — % Let a and a* be the annihilation and
creation operators with common core, the Schwarz space S(R), i.e.,

1 d 1 .
a = E($+%)=7—§(Q+1P),
* _L(x_i)z_l_(Q_ip)
¢ V2 dz’ /2

and also the number operator is defined by N, i.e., N = a*a = aa™ — 1.
In fact the Hamiltonian H = —3A + V(z) equals to N and thus the
density operator p is e™#V, 8 > 0. Let ¢g = r=1/4e=2*/2 and Op =
(n!)~Y2(a*)"dy. Then {¢,}3, are just the Hermite functions which
form an orthonormal basis for L?(R) and hold the properties:

¢ =vVn+1l¢pay1 n=0,1,2 ..,

a¢'n - \/"_'Lﬁbn—l n= 172, ey

agg = 0.
Also the operators a,a* and N have the relations on S(R) :
(4.9) ap=-ePpa, a*p=e’pa*.
By Lemma 4.1, Tr(Ne™®M) < oo implies that 7(a) and w(a*) are
closed and densely defined operators, and also & belongs to D(|m(a)|>)N
D(|m(a*)]?). Let us change 7(P) or m(Q) into m(a) and a normalized ad-
missible function f,i.e., fp f(t)dt = 1 in Theorem 4.5. We obtain the
Dirichlet form (£, D(£)) independent of admissible function f; for any
¢ € D(E)

(410) €[] = ll(um(a) = Aj(n(@))EN® + li(um(a®) — Aj(m(a)))E]?,

where g = A\~ = €8/4. This Dirichlet form is the form in Proposition
4.1 of [5].
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