THE INEQUALITIES OF COMMUTATORS ON WEAK HERZ SPACES

LIU LANZHE

ABSTRACT. In this paper, the boundedness of some commutators related to linear operators on weak Herz spaces are obtained.

1. Introduction

Let $b \in BMO(\mathbb{R}^n)$ and T be a standard Calderon-Zygmund operator. The commutator [b, T] generated by b and T is defined by

$$[b,T]f(x) = b(x)Tf(x) - T(bf)(x).$$

A classical result of Coifman, Rochberg and Weiss [2] states that commutator [b,T] is bounded on $L^p(\mathbb{R}^n)$ (1 . Chanillo [1] consideredthe similar question when Calderon-Zygmund operator is replaced by the fractional integral operator. In recent years, the theory of Herz type spaces has been developed (see [3], [6]). Lu and Yang [7] generalized these results to the case of Herz spaces (also see [5]), in fact, they have proved that if [b,T] is bounded on L^q for some $q \in (1,\infty)$, then [b,T]is bounded on Herz space $K_q^{\alpha,p}(\mathbb{R}^n)$ for any $\alpha \in (-n/q, n(1-1/q))$ and $p \in (0, \infty]$ only under certain very weak local conditions on the size of T. The main purpose of this paper is to consider the boundedness of commutators on weak Herz spaces $W\dot{K}_q^{\alpha,p}(\mathbb{R}^n)$ when $\alpha=n(1-1/q)$. It was observed that commutator [b, T] is not be of weak type (1.1). In fact, Perez proved that [b, T] satisfy $L(\log L)$ type inequalities (see [9]). We also show that commutator [b, T] satisfy $L(\log L)$ type estimates in Herz spaces when $\alpha = n(1-1/q)$, in addition, we get the weak boundedness of commutators in Herz spaces when b satisfies certain condition. Let us first introduce some notations (see [3], [6]).

Received February 26, 2002. Revised June 25, 2002. 2000 Mathematics Subject Classification: 42B25, 42B20. Key words and phrases: commutator, Herz space, weak Herz space. Let $B_k = \{x \in \mathbb{R}^n : |x| \le 2^k\}$, $A_k = B_k \setminus B_{k-1}$, $k \in \mathbb{Z}$. Let $\chi_k = \chi_{A_k}$ for $k \in \mathbb{Z}$, where χ_E is the characteristic function of the set E.

Definition 1. Let $0 < p, q < \infty, \alpha \in \mathbb{R}$.

(1) The homogeneous Herz space is defined by

$$\dot{K}^{\alpha,p}_q(\mathbb{R}^n)=\{f\in L^q_{loc}(\mathbb{R}^n\setminus\{0\}):||f||_{\dot{K}^{\alpha,p}_q(\mathbb{R}^n)}<\infty\},$$

where

$$||f||_{\dot{K}_{q}^{\alpha,p}(\mathbb{R}^{n})} = \left[\sum_{k=-\infty}^{\infty} 2^{k\alpha p} ||f\chi_{k}||_{L^{q}}^{p}\right]^{1/p}.$$

(2) The nonhomogeneous Herz space is defined by

$$K_q^{\alpha,p}(\mathbb{R}^n) = \{ f \in L_{loc}^q(\mathbb{R}^n) : ||f||_{K_q^{\alpha,p}(\mathbb{R}^n)} < \infty \},$$

where

$$||f||_{K^{\alpha,p}_q(\mathbb{R}^n)} = \left[||f\chi_{B_0}||^p_{L^q} + \sum_{k=1}^{\infty} 2^{k\alpha p} ||f\chi_k||^p_{L^q}\right]^{1/p}.$$

DEFINITION 2. Let $0 < p, q < \infty$, $\alpha \in \mathbb{R}$. For $k \in \mathbb{Z}$ and measurable function f(x) on \mathbb{R}^n , let $m_k(\lambda, f) = |\{x \in A_k : |f(x)| > \lambda\}|$; for $k \in \mathbb{N}$, let $\tilde{m}_k(\lambda, f) = m_k(\lambda, f)$ and $\tilde{m}_0(\lambda, f) = |\{x \in B_0 : |f(x)| > \lambda\}|$.

(1) The homogeneous weak Herz space is defined by

$$W\dot{K}_q^{\alpha,p}(\mathbb{R}^n) = \{f : ||f||_{W\dot{K}_q^{\alpha,p}(\mathbb{R}^n)} < \infty\},\,$$

where

$$||f||_{W\dot{K}_q^{\alpha,p}(\mathbb{R}^n)} = \sup_{\lambda > 0} \lambda \left[\sum_{k = -\infty}^{\infty} 2^{k\alpha p} m_k(\lambda, f)^{p/q} \right]^{1/p}.$$

(2) The nonhomogeneous weak Herz space is defined by

$$WK_q^{\alpha,p}(\mathbb{R}^n) = \{f: ||f||_{WK_q^{\alpha,p}(\mathbb{R}^n)} < \infty\},$$

where

$$||f||_{WK_q^{\alpha,p}(\mathbb{R}^n)} = \sup_{\lambda > 0} \lambda \left[\sum_{k=0}^{\infty} 2^{k\alpha p} \tilde{m}_k(\lambda, f)^{p/q} \right]^{1/p}.$$

DEFINITION 3. Let $b \in BMO(\mathbb{R}^n)$. The commutators of the maximal operator and the fractional maximal operator are defined, respectively, by

$$M_b f(x) = \sup_{r>0} |B(x,r)|^{-1} \int_{B(x,r)} |b(x) - b(y)| |f(y)| dy$$

and

$$M_b^{\lambda} f(x) = \sup_{r>0} |B(x,r)|^{-1/\lambda'} \int_{B(x,r)} |b(x) - b(y)| \ |f(y)| dy,$$

where $1 \le \lambda \le \infty$ and $1/\lambda + 1/\lambda' = 1$.

2. Main results and their proofs

We begin with the boundedness of the commutators M_b and M_b^{λ} on weak Herz spaces, which will be useful to the main results in this paper and are themselves of independent interest.

THEOREM 1. Let $b \in BMO(\mathbb{R}^n)$ and $0 , <math>\alpha = n(1-1/q)$. Then for any $f \in K_q^{\alpha,p}(\mathbb{R}^n)$ and $\lambda > 0$, there exist constant C > 0 independent on f and λ , such that

$$\left[\sum_{k=0}^{\infty} 2^{k\alpha p} \tilde{m}_k(\lambda, M_b f)^{p/q}\right]^{1/p} \\
\leq C\lambda^{-1} ||f||_{K_q^{\alpha, p}(\mathbb{R}^n)} \left(1 + \log^+(\lambda^{-1} ||f||_{K_q^{\alpha, p}(\mathbb{R}^n)})\right).$$

Proof. Let $f \in K_q^{\alpha,p}(\mathbb{R}^n)$ and $f(x) = \sum_{j=0}^{\infty} \lambda_j a_j(x)$, where supp $a_j \subset B_j$, $||a_j||_{L^q} \leq C2^{-j\alpha}$ for $j \in N \cup \{0\}$ and $||f||_{K_q^{\alpha,p}(\mathbb{R}^n)} \sim \left(\sum_{j=0}^{\infty} |\lambda_j|^p\right)^{1/p}$. We write

$$\left[\sum_{k=0}^{\infty} 2^{k\alpha p} \tilde{m}_k(\lambda, M_b f)^{p/q}\right]^{1/p} \le C \left[\sum_{k=0}^{3} 2^{k\alpha p} \tilde{m}_k(\lambda, M_b f)^{p/q}\right]^{1/p}$$
$$+ C \left[\sum_{k=4}^{\infty} 2^{k\alpha p} \tilde{m}_k(\lambda, M_b f)^{p/q}\right]^{1/p} \equiv I + II.$$

For I, by the boundedness of M_b on $L^q(\mathbb{R}^n)$ for $1 < q < \infty$ (see [10]) and 0 , we have

$$\begin{split} I &\leq C\lambda^{-1} ||f||_{L^{q}} \bigg(\sum_{k=0}^{3} 2^{k\alpha p} \bigg)^{1/p} \leq C\lambda^{-1} \sum_{j=0}^{\infty} |\lambda_{j}| \; ||a_{j}||_{L^{q}} \\ &\leq C\lambda^{-1} \sum_{j=0}^{\infty} |\lambda_{j}| 2^{-j\alpha} \leq C\lambda^{-1} \sum_{j=0}^{\infty} |\lambda_{j}| \\ &\leq C\lambda^{-1} \left(\sum_{j=0}^{\infty} |\lambda_{j}|^{p} \right)^{1/p} \leq C\lambda^{-1} ||f||_{K_{q}^{\alpha,p}(\mathbb{R}^{n})}. \end{split}$$

On the other hand,

$$II \leq C \left[\sum_{k=4}^{\infty} 2^{k\alpha p} \tilde{m}_k \left(\lambda/2, \sum_{j=0}^{k-3} |\lambda_j| M_b a_j \right)^{p/q} \right]^{1/p}$$

$$+ C \left[\sum_{k=4}^{\infty} 2^{k\alpha p} \tilde{m}_k \left(\lambda/2, M_b \left(\sum_{j=k-2}^{\infty} |\lambda_j| a_j \right) \right)^{p/q} \right]^{1/p}$$

$$\equiv II_1 + II_2.$$

Using the boundedness of M_b on $L^q(\mathbb{R}^n)$, we have

$$\begin{split} II_2 &\leq C\lambda^{-1} \left[\sum_{k=4}^{\infty} 2^{k\alpha p} || \sum_{j=k-2}^{\infty} \lambda_j a_j ||_{L^q}^p \right]^{1/p} \\ &\leq C\lambda^{-1} \left[\sum_{k=4}^{\infty} 2^{k\alpha p} \sum_{j=k-2}^{\infty} |\lambda_j|^p 2^{-j\alpha p} \right]^{1/p} \\ &\leq C\lambda^{-1} \left[\sum_{j=0}^{\infty} |\lambda_j|^p \sum_{k=0}^{j+2} 2^{(k-j)\alpha p} \right]^{1/p} \\ &\leq C\lambda^{-1} \left(\sum_{j=0}^{\infty} |\lambda_j|^p \right)^{1/p} \\ &\leq C\lambda^{-1} ||f||_{K_q^{\alpha,p}(\mathbb{R}^n)}; \end{split}$$

For II_1 , denoting $b_j = |B_j|^{-1} \int_{B_j} b(y) dy$, by the properties of $BMO(\mathbb{R}^n)$ (see [12]), we have, for $x \in A_k$ with $j \leq k-3$,

$$\begin{aligned} &M_b a_j(x) \\ &\leq C 2^{-kn} \int_{B_j} |b(x) - b(y)| \ |a_j(y)| dy \\ &\leq C 2^{-kn} \left(|b(x) - b_j| \ ||a_j||_{L^q} |B_j|^{1 - 1/q} + ||b||_{BMO} ||a_j||_{L^q} |B_j|^{1 - 1/q} \right) \\ &\leq C 2^{-kn} (|b(x) - b_k| + k||b||_{BMO}). \end{aligned}$$

Therefore,

$$II_{1} \leq C \left[\sum_{k=4}^{\infty} 2^{k\alpha p} \tilde{m}_{k} \left(\lambda/4, C2^{-kn} | b(x) - b_{k}| \sum_{j=0}^{\infty} |\lambda_{j}| \right)^{p/q} \right]^{1/p}$$

$$+ C \left[\sum_{k=4}^{\infty} 2^{k\alpha p} \tilde{m}_{k} \left(\lambda/4, Ck2^{-kn} | |b||_{BMO} \sum_{j=0}^{\infty} |\lambda_{j}| \right)^{p/q} \right]^{1/p}$$

$$\equiv II_{1}^{(1)} + II_{1}^{(2)}.$$

Using John-Nirenberg inequality, we deduce

$$II_{1}^{(1)} \leq C \left[\sum_{k=4}^{\infty} 2^{k\alpha p} \left(\exp\left(-\frac{c2^{kn}\lambda}{||b||_{BMO} \sum_{j=0}^{\infty} |\lambda_{j}|} \right) 2^{kn} \right)^{p/q} \right]^{1/p}$$

$$\leq C \left[\sum_{k=0}^{\infty} 2^{k\alpha p + knp/q} \exp\left(-\frac{c\lambda 2^{kn}}{||b||_{BMO} \sum_{j=0}^{\infty} |\lambda_{j}|} \right) \right]^{1/p}$$

$$\leq C \left[\int_{0}^{\infty} x^{p-1} \exp\left(-\frac{c\lambda x}{||b||_{BMO} \sum_{j=0}^{\infty} |\lambda_{j}|} \right) dx \right]^{1/p}$$

$$= C\lambda^{-1} ||b||_{BMO} \sum_{j=0}^{\infty} |\lambda_{j}| \left(\int_{0}^{\infty} t^{p-1} e^{-t} dt \right)^{1/p}$$

$$\leq C\lambda^{-1} \left(\sum_{j=0}^{\infty} |\lambda_{j}|^{p} \right)^{1/p}$$

$$\leq C\lambda^{-1} ||f||_{K_{q}^{\alpha,p}(\mathbb{R}^{n})}.$$

904 Liu Lanzhe

For $II_1^{(2)}$, by using the fact: if there exist y>1 such that $2^x/x < y$ holds for x>3, then $2^x \le cy \log_2 y$, we see that, for k>3, if $|\{x\in A_k: C2^{-kn}k||b||_{BMO}\sum_{j=0}^{\infty}|\lambda_j|>\lambda/4\}|\neq 0$,

$$1 < 2^{kn}/kn < C\lambda^{-1}||b||_{BMO} \sum_{j=0}^{\infty} |\lambda_j|,$$

and thus

$$2^{kn} \le C\lambda^{-1} \left(\sum_{j=0}^{\infty} |\lambda_j| \right) \left[1 + \log^+ \left(\lambda^{-1} \sum_{j=0}^{\infty} |\lambda_j| \right) \right].$$

Let K_{λ} denote the maximal integer which satisfies this estimation. Then

$$II_{1}^{(2)} \leq C \left(\sum_{k=4}^{K\lambda} 2^{k\alpha p} \cdot 2^{knp/q} \right)^{1/p} \leq C 2^{K_{\lambda} n}$$

$$\leq C \lambda^{-1} \left(\sum_{j=0}^{\infty} |\lambda_{j}| \right) \left[1 + \log^{+} \left(\lambda^{-1} \sum_{j=0}^{\infty} |\lambda_{j}| \right) \right]$$

$$\leq C \lambda^{-1} \left(\sum_{j=0}^{\infty} |\lambda_{j}|^{p} \right)^{1/p} \left[1 + \log^{+} \left(\lambda^{-1} \left(\sum_{j=0}^{\infty} |\lambda_{j}|^{p} \right)^{1/p} \right) \right]$$

$$\leq C \lambda^{-1} ||f||_{K_{q}^{\alpha,p}(\mathbb{R}^{n})} [1 + \log^{+} (\lambda^{-1} ||f||_{K_{q}^{\alpha,p}(\mathbb{R}^{n})})].$$

Combining the estimations of I, II_2 , $II_1^{(1)}$ and $II_1^{(2)}$, we gain the conclusion of the theorem.

THEOREM 2. Let $b \in BMO(\mathbb{R}^n)$ and b satisfy the condition $L: |b(x) - b_j| \leq C|b(x) - b_k|$ for any $k, j \in \mathbb{Z}$ and $j \leq k - 3$, $x \in A_k$. If $0 , <math>\alpha = n(1 - 1/q)$. Then M_b is bounded from $\dot{K}_q^{\alpha,p}(\mathbb{R}^n)$ (or $K_q^{\alpha,p}(\mathbb{R}^n)$) to $W\dot{K}_q^{\alpha,p}(\mathbb{R}^n)$ (or $WK_q^{\alpha,p}(\mathbb{R}^n)$).

Proof. We only prove the homogeneous case. Let $f(x) = \sum_{j=-\infty}^{\infty} \lambda_j$ $a_j(x) \in \dot{K}_q^{\alpha,p}(\mathbb{R}^n)$, where $\operatorname{supp} a_j \subset B_j$, $||a_j||_{L^q} \leq C2^{-j\alpha}$ for $j \in \mathbb{Z}$ and

$$||f||_{\dot{K}^{\alpha,p}_q(\mathbb{R}^n)} \sim \left(\sum_{j=-\infty}^{\infty} |\lambda_j|^p\right)^{1/p}$$
. We write

$$||M_b f||_{W\dot{K}_q^{\alpha,p}} \le C \sup_{\lambda>0} \lambda$$

$$\times \left[\sum_{k=-\infty}^{\infty} 2^{k\alpha p} \left| \left\{ x \in A_k : M_b \left(\sum_{j=-\infty}^{k-3} \lambda_j a_j \right) (x) > \lambda/2 \right\} \right|^{p/q} \right]^{1/p} + C \sup_{\lambda>0} \lambda$$

$$\times \left[\sum_{k=-\infty}^{\infty} 2^{k\alpha p} \left| \left\{ x \in A_k : M_b \left(\sum_{j=k-2}^{\infty} \lambda_j a_j \right) (x) > \lambda/2 \right\} \right|^{p/q} \right]^{1/p}$$

$$\equiv I + II.$$

For II, using the boundedness of M_b on $L^q(\mathbb{R}^n)$ for $1 < q < \infty$, and 0 , we have

$$II \leq C \left[\sum_{k=-\infty}^{\infty} 2^{k\alpha p} \left\| \sum_{j=k-2}^{\infty} \lambda_j a_j \right\|_{L^q}^p \right]^{1/p}$$

$$\leq C \left[\sum_{j=0}^{\infty} |\lambda_j|^p \sum_{k=-\infty}^{j+2} 2^{(k-j)\alpha p} \right]^{1/p}$$

$$\leq C ||f||_{\dot{K}_{\alpha}^{\alpha,p}(\mathbb{R}^n)}.$$

For I, using the estimation of $M_b a_j$ in the proof of Theorem 1 and condition L we see that, for $x \in A_k$ with $j \leq k - 3$,

$$M_b a_j(x) \le C 2^{-kn} (|b(x) - b_k| + ||b||_{BMO}),$$

and therefore

$$\begin{split} I &\leq C \sup_{\lambda > 0} \lambda \\ & \times \left[\sum_{k = -\infty}^{\infty} 2^{k\alpha p} \left| \left\{ x \in A_k : C2^{-kn} |b(x) - b_k| \sum_{j = -\infty}^{\infty} |\lambda_j| > \lambda/4 \right\} \right|^{p/q} \right]^{1/p} \\ & + C \sup_{\lambda > 0} \lambda \\ & \times \left[\sum_{k = -\infty}^{\infty} 2^{k\alpha p} \left| \left\{ x \in A_k : C2^{-kn} ||b||_{BMO} \sum_{j = -\infty}^{\infty} |\lambda_j| > \lambda/4 \right\} \right|^{p/q} \right]^{1/p} \\ & \equiv I_1 + I_2. \end{split}$$

Using John-Nirenberg inequality, we deduce

$$I_{1} \leq C \sup_{\lambda > 0} \lambda \left[\sum_{k = -\infty}^{\infty} 2^{knp} \exp\left(-\frac{c\lambda 2^{kn}}{||b||_{BMO} \sum_{j = -\infty}^{\infty} |\lambda_{j}|}\right) \right]^{1/p}$$

$$\leq C ||f||_{K_{q}^{\alpha,p}(\mathbb{R}^{n})}.$$

For any fixed $\lambda > 0$, if $\left| \left\{ x \in A_k : C2^{-kn} ||b||_{BMO} \sum_{j=-\infty}^{\infty} |\lambda_j| > \lambda/4 \right\} \right| \neq 0$, then

$$2^{kn} \le C\lambda^{-1} \sum_{j=-\infty}^{\infty} |\lambda_j|.$$

Let K_{λ} denote the maximal integer which satisfies this estimation. Then

$$I_{2} \leq C \sup_{\lambda > 0} \lambda \left(\sum_{k = -\infty}^{K_{\lambda}} 2^{k\alpha p} \cdot 2^{knp/q} \right)^{1/p} \leq C \sup_{\lambda > 0} \lambda 2^{K_{\lambda} n}$$

$$\leq C \sum_{j = -\infty}^{\infty} |\lambda_{j}| \leq C ||f||_{K_{q}^{\alpha, p}(\mathbb{R}^{n})}.$$

This finishes the proof of Theorem 2.

THEOREM 3. Let $b \in BMO(\mathbb{R}^n)$ and $1 < \lambda < \infty$, $0 < p_1 \le p_2 \le 1 < q_1 < \lambda$, $1/q_2 = 1/q_1 - 1/\lambda$, $\alpha = n(1 - 1/q_1)$.

(1) For any s>0 and $f\in K_{q_1}^{\alpha,p_1}(\mathbb{R}^n)$, we have

$$\left[\sum_{k=0}^{\infty} 2^{k\alpha p_2} \tilde{m}_k(s, M_b^{\lambda} f)^{p_2/q_2}\right]^{1/p_2} \\
\leq C s^{-1} ||f||_{K_{q_1}^{\alpha, p_1}(\mathbb{R}^n)} \left(1 + \log^+(s^{-1} ||f||_{K_{q_1}^{\alpha, p_1}(\mathbb{R}^n)})\right).$$

(2) Furthermore, if b satisfies the condition L, then M_b^{λ} is bounded from $\dot{K}_{q_1}^{\alpha,p_1}(\mathbb{R}^n)$ (or $K_{q_1}^{\alpha,p_1}(\mathbb{R}^n)$) to $W\dot{K}_{q_2}^{\alpha,p_2}(\mathbb{R}^n)$ (or $WK_{q_2}^{\alpha,p_2}(\mathbb{R}^n)$).

Proof. Notice that if $p_2 \geq p_1$, then

$$W\dot{K}^{\alpha,p_1}_{q_2}(\mathbb{R}^n)\subset W\dot{K}^{\alpha,p_2}_{q_2}(\mathbb{R}^n) \text{ and } WK^{\alpha,p_1}_{q_2}(\mathbb{R}^n)\subset WK^{\alpha,p_2}_{q_2}(\mathbb{R}^n).$$

Thus, we only need to show the theorem in the case $p_1 = p_2$. (1) Let $f(x) = \sum_{j=0}^{\infty} \lambda_j a_j(x) \in K_{q_1}^{\alpha, p_1}(\mathbb{R}^n)$, where every a_j are the same as in the proof of Theorem 1 and $||f||_{K_{q_1}^{\alpha,p_1}(\mathbb{R}^n)} \sim \left(\sum_{j=0}^{\infty} |\lambda_j|_1^p\right)^{1/p_1}$. We write

$$\begin{split} \left[\sum_{k=0}^{\infty} 2^{k\alpha p_2} \tilde{m}_k(s, M_b^{\lambda} f)^{p_2/q_2} \right]^{1/p_2} &\leq C \left[\sum_{k=0}^{3} 2^{k\alpha p_2} \tilde{m}_k(s, M_b^{\lambda} f)^{p_2/q_2} \right]^{1/p_2} \\ &+ C \left[\sum_{k=0}^{\infty} 2^{k\alpha p_2} \tilde{m}_k(s, M_b^{\lambda} f)^{p_2/q_2} \right]^{1/p_2} &\equiv I + II. \end{split}$$

For I, using the fact that M_b^{λ} is of type (q_1, q_2) (see [10]) and 0 ,we obtain, by using an argument similar to the proof of Theorem 1, $I \leq Cs^{-1}||f||_{K^{\alpha,p_1}_{q_1}(\mathbb{R}^n)}$ and

$$II \le C \left[\sum_{k=4}^{\infty} 2^{k\alpha p_2} \left| \left\{ x \in A_k : M_b^{\lambda} \left(\sum_{j=0}^{k-3} \lambda_j a_j \right) (x) > s/2 \right\} \right|^{p_2/q_2} \right]^{1/p_2}$$

$$+ C \left[\sum_{k=4}^{\infty} 2^{k\alpha p_2} \left| \left\{ x \in A_k : M_b^{\lambda} \left(\sum_{j=k-2}^{\infty} \lambda_j a_j \right) (x) > s/2 \right\} \right|^{p_2/q_2} \right]^{1/p_2}$$

$$= II_1 + II_2.$$

908 Liu Lanzhe

Since M_b^{λ} is of type (q_1, q_2) , we deduce

$$II_2 \le Cs^{-1}||f||_{K_{q_1}^{\alpha,p_1}(\mathbb{R}^n)}.$$

For II_1 , using an argument similar to the proof of Theorem 1, we have, if $x \in A_k$ and $0 \le j \le k-3$,

$$M_b^{\lambda} a_i(x) \le C 2^{-kn/\lambda'} |b(x) - b_k| + Ck 2^{-kn/\lambda'} ||b||_{BMO}.$$

Thus, using the argument same as the proof of Theorem 1, we deduce

$$II_1 \le Cs^{-1}||f||_{K_{q_1}^{\alpha,p_1}(\mathbb{R}^n)} \left(1 + \log^+(s^{-1}||f||_{K_{q_1}^{\alpha,p_1}(\mathbb{R}^n)})\right).$$

The proof of (2) is similar to the proof of Theorem 2, we omit the details. This finishes the proof of Theorem 3.

THEOREM 4. Let $b \in BMO(\mathbb{R}^n)$ and $1 < \lambda < \infty$, $0 < p_1 \le p_2 \le 1 < q_1 < \lambda$, $1/q_2 = 1/q_1(1-p_1/\lambda)$, $\alpha_1 = n(1-1/q_1)$, $\alpha_2 = \alpha_1 + n(p_1/q_1 - 1)/\lambda$. Then

(1) For any s > 0 and $f \in K_{q_1}^{\alpha_1, p_1}(\mathbb{R}^n)$, we have

$$\begin{split} & \left[\sum_{k=0}^{\infty} 2^{k\alpha_2 p_2} \tilde{m}_k(s, M_b^{\lambda} f)^{p_2/q_2} \right]^{1/p_2} \\ \leq & C s^{-1} ||f||_{K_{q_1}^{\alpha_1, p_1}(\mathbb{R}^n)} \left(1 + \log^+(s^{-1} ||f||_{K_{q_1}^{\alpha_1, p_1}(\mathbb{R}^n)}) \right). \end{split}$$

(2) Furthermore, if b satisfies the condition L, then M_b^{λ} is bounded from $\dot{K}_{q_1}^{\alpha_1,p_1}(\mathbb{R}^n)$ (or $K_{q_1}^{\alpha_1,p_1}(\mathbb{R}^n)$) to $W\dot{K}_{q_2}^{\alpha_2,p_2}(\mathbb{R}^n)$ (or $WK_{q_2}^{\alpha_2,p_2}(\mathbb{R}^n)$).

The proof of the theorem is similar to the proof of Theorem 3, we omit the details.

Now let us state one of our main theorems.

THEOREM 5. Let $b \in BMO(\mathbb{R}^n)$ and T be a linear operator. Suppose that the commutator [b,T] is of weak type (q,q) for some $q \in (1,+\infty)$ and that T satisfies the local size condition

$$|Tf(x)| \le C|x|^{-n} \int |f(y)|dy$$

for $f \in L^1_{loc}(\mathbb{R}^n)$, supp $f \subset A_k$ and $|x| \geq 2^{k+1}$ with $k \in \mathbb{Z}$. Let $0 , <math>\alpha = n(1-1/q)$. Then

(1) For any $\lambda > 0$ and $f \in K_q^{\alpha,p}(\mathbb{R}^n)$, we have

$$\left[\sum_{k=0}^{\infty} 2^{k\alpha p} \tilde{m}_k(\lambda, [b, T] f)^{p/q} \right]^{1/p} \\
\leq C \lambda^{-1} ||f||_{K_q^{\alpha, p}(\mathbb{R}^n)} (1 + \log^+(\lambda^{-1} ||f||_{K_q^{\alpha, p}(\mathbb{R}^n)})).$$

- (2) Furthermore, if b satisfies the condition L, then [b,T] is bounded from $\dot{K}_{q}^{\alpha,p}(\mathbb{R}^{n})$ (or $K_{q}^{\alpha,p}(\mathbb{R}^{n})$) to $W\dot{K}_{q}^{\alpha,p}(\mathbb{R}^{n})$ (or $WK_{q}^{\alpha,p}(\mathbb{R}^{n})$).
- *Proof.* (1) Let $f(x) = \sum_{j=0}^{\infty} \lambda_j a_j$ $(x) \in K_q^{\alpha,p}(\mathbb{R}^n)$, where the a_j are the same as in the proof of Theorem 1 and $||f||_{K_q^{\alpha,p}(\mathbb{R}^n)} \sim \left(\sum_{j=0}^{\infty} |\lambda_j|^p\right)^{1/p}$. We write

$$\begin{split} &\left[\sum_{k=0}^{\infty} 2^{k\alpha p} \tilde{m}_k(\lambda, [b, T] f)^{p/q}\right]^{1/p} \leq C \left[\sum_{k=0}^{3} 2^{k\alpha p} \tilde{m}_k(\lambda, [b, T] f)^{p/q}\right]^{1/p} \\ &+ C \left[\sum_{k=4}^{\infty} 2^{k\alpha p} m_k \left(\lambda/2, [b, T] \left(\sum_{j=0}^{k-3} \lambda_j a_j\right)\right)^{p/q}\right]^{1/p} \\ &+ C \left[\sum_{k=4}^{\infty} 2^{k\alpha p} m_k (\lambda/2, [b, T] \left(\sum_{j=k-2}^{\infty} \lambda_j a_j\right))^{p/q}\right]^{1/p} \\ &\equiv I_1 + I_2 + I_3. \end{split}$$

Using the condition that [b, T] is of weak type (q, q) and 0 , we have for <math>i = 1, 3,

$$I_i \leq C\lambda^{-1} \left(\sum_{j=0}^{\infty} |\lambda_j|^p\right)^{1/p} \leq C\lambda^{-1} ||f||_{K_q^{\alpha,p}(\mathbb{R}^n)}.$$

For I_2 , note that $x \in A_k$ and $j \le k-3$, by using the size condition of T, we obtain

$$\left| [b,T] \left(\sum_{j=0}^{k-3} \lambda_j a_j \right) (x) \right| \le C|x|^{-n} \int |b(x) - b(y)| \left| \sum_{j=0}^{k-3} \lambda_j a_j(y) \right| dy$$

$$\le CM_b f(x),$$

910 Liu Lanzhe

and thus, by Theorem 1,

$$I_2 \le C\lambda^{-1}||f||_{K_q^{\alpha,p}(\mathbb{R}^n)} \left(1 + \log^+(\lambda^{-1}||f||_{K_q^{\alpha,p}(\mathbb{R}^n)})\right).$$

The proof of (2) may be obtained by using Theorem 2.

This finishes the proof of Theorem 5.

THEOREM 6. Let $b \in BMO(\mathbb{R}^n)$ and 0 < l < n. Suppose that the linear operator T_l satisfies

$$|T_l f(x)| \le C|x|^{-(n-l)} \int |f(y)| dy$$

for $f \in L^1_{loc}(\mathbb{R}^n)$, $\operatorname{supp} f \subset A_k$ and $|x| \geq 2^{k+1}$ with $k \in \mathbb{Z}$. Assume $0 < p_1 \leq p_2 \leq 1 < q_1 < n/l$, $\alpha = n(1-1/q_1)$, $1/q_2 = 1/q_1 - l/n$, and that $[b, T_l]$ is of weak type (q_1, q_2) . Then

(1) For any $\lambda > 0$ and $f \in K_{q_1}^{\alpha_1 p_1}(\mathbb{R}^n)$, we have

$$\left[\sum_{k=0}^{\infty} 2^{k\alpha p_2} \tilde{m}_k(\lambda, [b, T_l] f)^{p_2/q_2} \right]^{1/p_2} \\
\leq C\lambda^{-1} ||f||_{K_{q_1}^{\alpha, p_1}(\mathbb{R}^n)} (1 + \log^+(\lambda^{-1} ||f||_{K_{q_1}^{\alpha, p_1}(\mathbb{R}^n)})).$$

(2) Furthermore, if b satisfies the condition L, then $[b,T_l]$ is bounded from $\dot{K}^{\alpha,p_1}_{q_1}(\mathbb{R}^n)$ (or $K^{\alpha,p_1}_{q_1}(\mathbb{R}^n)$) to $W\dot{K}^{\alpha,p_2}_{q_2}(\mathbb{R}^n)$ (or $WK^{\alpha,p_2}_{q_2}(\mathbb{R}^n)$).

The proof is similar to the proof of Theorem 3, we only notice that, if $x \in A_k$ and supp $a_j \subset B_j$ with $j \leq k - 3$,

$$\left| [b,T_l] \left(\sum_{j \leq k-3} \lambda_j a_j
ight) (x)
ight| \leq C M_b^{n/l} f(x),$$

then, we obtain the conclusion of Theorem 6 by using Theorem 3.

THEOREM 7. Let $b \in BMO(\mathbb{R}^n)$ and 0 < l < n. Suppose that the linear operator T_l satisfies

$$|T_l f(x)| \le C|x|^{-(n-l)} \int |f(y)| dy$$

for $f \in L^1_{loc}(\mathbb{R}^n)$, supp $f \subset A_k$ and $|x| \geq 2^{k+1}$ with $k \in \mathbb{Z}$. Assume $0 < p_1 \leq p_2 \leq 1 < q_1 < n/l$, $\alpha_1 = n(1-1/q_1)$, $\alpha_2 = \alpha_1 + l(p_1/q_1-1)$, $1/q_2 = 1/q_1(1-lp_1/n)$, and that $[b,T_l]$ is of weak type (q_1,q_2) . Then (1) For any $\lambda > 0$ and $f \in K^{\alpha_1,p_1}_{q_1}(\mathbb{R}^n)$, we have

$$\begin{split} & \left[\sum_{k=0}^{\infty} 2^{k\alpha_2 p_2} \tilde{m}_k(\lambda : [b, T_l] f)^{p_2/q_2} \right]^{1/p_2} \\ & \leq C \lambda^{-1} ||f||_{K_{q_1}^{\alpha_1, p_1}(\mathbb{R}^n)} (1 + \log^+(\lambda^{-1} ||f||_{K_{q_1}^{\alpha_1, p_1}(\mathbb{R}^n)})). \end{split}$$

(2) Furthermore, if b satisfies the condition L, then $[b,T_l]$ is bounded from $\dot{K}_{q_1}^{\alpha_1 p_1}(\mathbb{R}^n)$ (or $K_{q_1}^{\alpha_1,p_1}(\mathbb{R}^n)$) to $W\dot{K}_{q_2}^{\alpha_2,p_2}(\mathbb{R}^n)$ (or $WK_{q_2}^{\alpha_2,p_2}(\mathbb{R}^n)$).

The proof is similar. We omit the details.

COROLLARY 1. If the size condition of T in Theorem 5 is replaced by

(1.1)
$$|Tf(x)| \le C \int |f(y)| |x - y|^{-n} dy$$

for $f \in L^1_{loc}(\mathbb{R}^n)$ with compact support and $x \notin supp f$. Then the conclusions of Theorem 5 also hold.

COROLLARY 2. If the size condition of T in Theorem 6 and Theorem 7 is replaced by

(1.2)
$$|T_l f(x)| \le C \int |f(y)| |x - y|^{-(n-l)} dy$$

for $f \in L^1_{loc}(\mathbb{R}^n)$ with compact support and $x \notin supp f$. Then the conclusions of Theorem 6 and Theorem 7 also hold.

REMARK 1. The size conditions (1.1) and (1.2) are satisfied by many operators in harmonic analysis, such as Calderon-Zygmund operators, Fefferman's singular multiplier, Ricci-Stein's oscillatory singular integral, the Bochner-Riesz operators at the critical index, fractional integral operators and so on. Thus, the weak type estimates of these operators in Herz spaces are obtained.

REMARK 2. If b does not to satisfy the condition L, the weak type estimates of [b, T] in the homogeneous Herz space is still an open problem.

References

- [1] S. Chanillo, A note on commutators, Indiana Univ. Math. J. 31 (1982), 7-16.
- [2] R. Coifman, R. Rochberg, and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611-635.
- [3] G. Hu, S. Lu and, D. Yang, *The weak Herz spaces*, J. of Beijing Normal University (Natural science) **31** (1997), 27–36.
- [4] _____, The applications of weak Herz spaces, Adv. Math. (China) 26 (1997), 417-428.
- [5] Z. Liu, Boundedness of commutators of Calderon-Zygmund singular integral operator on Herz type spaces, Adv. Math. (China) (to appear).
- [6] S. Lu and D. Yang, The decomposition of the weighted Herz spaces and its applications, Sci. China Ser. A 38 (1995), 147-158.
- [7] _____, The continuity of commutators on Herz type spaces, Michigan Math. J. 44 (1997), 255-281.
- [8] S. Lu, L. Tang, and D. Yang, Boundedness of commutators on homogeneous Herz spaces, Sci. China Ser. A 41 (1998), 1023-1033.
- [9] C. Perez, Endpoint estimates for commutators of singular integral operators, J. Func. Anal. 128 (1995), 163–185.
- [10] C. Segovia and J. L. Torrea, Vector valued commutators and applications, Indiana Univ. Math. J. 38 (1989), 959–971.
- [11] _____, Higher order commutators for vector valued Calderon -Zygmund operators, Trans. Amer. Math. Soc. 336 (1993), 537–556.
- [12] E. M. Stein, Harmonic Analysis:real-variable methods, orthogonality and oscillatory integrals, Princeton Univ. Press, Princeton, NJ, 1993.

Department of Applied Mathematics Hunan University

Changsha 410082, P. R. China

E-mail: lanzheliu@263.net