임상진단 검사에서 ROC 곡선의 응용

Application of Receiver Operating Characteristics (ROC) Curves for Clinical Diagnostic Tests

  • Pak, Son-Il (Department of Veterinary Medicine, Kangwon National University) ;
  • Koo, Hee-Seung (College of National Resources, Colorado State University) ;
  • Hwang, Cheol-Yong (College of Veterinary Medicine, Seoul National University) ;
  • Youn, Hwa-Young (College of Veterinary Medicine, Seoul National University)
  • 발행 : 2002.09.01

초록

질병에 이환된 개체로부터 이환되지 않은 개체를 구분하기 위해 사용되는 대부분의 진단검사는 판별의 기준점 (cut-off value)을 필요로 한다. ROC (receiver operating characteristic) 곡선은 이러한 목적으로 흔히 사용되고 있으며 진단의 기준점을 다양하게 변화시킬 때 진단검사의 정확도 (민감도와 특이도)를 제시해주는 지표로 활용되고 있다. 저자들은 수의학관련 연구자들이 이 방법을 효과적으로 사용할 수 있도록 EXCEL에 내장된 비쥬얼 베이직으로 binormal ROC 곡선의 최대우도비를 계산해주는 프로그램을 작성하였다. 방사선 분야의 자료와 미생물학 자료를 예제로 들어 이 프로그램의 활용성을 높이고자 하였고 이 분야에 관심이 있는 연구자는 저자에게 연락하여 이 프로그램을 얻을 수 있다.

Diagnostic tests often require the determination of cut-off values that discriminate uninfected from infected individuals. The receiver operating characteristic (ROC) curve has been frequently used to attain this purpose and gives a representation of diagnostic accuracy (sensitivity and specificity) of a prediction model when varying the cut-point of a decision rule on a whole spectrum. We have written and tested a visual basic application program in EXCEL for maximum likelihood estimation of a binormal ROC curve, which also computes univariate statistics of a diagnostic test employed. Examples applying for computed tomographic images in radiology and methicillin-resistant Staphylococcus aureus research are given to illustrate this approach. This stand-alone module is available from the first author on request.

키워드

참고문헌

  1. Infect Control Hosp Epidemiol v.18 Environmental contamination due to methicillin-resistant Staphylococcus aureus Boyce JM;Potter-Bynoe G;Cherevert C;King T https://doi.org/10.1086/647686
  2. Prev Vet Med v.41 Methods for estimating area under receiver-operating characteristic curves: illustration with somatic-cell scores in subclinical intramammary infections Detilleux J;Arendt J;Lomba F;Leory P https://doi.org/10.1016/S0167-5877(99)00054-9
  3. J Math Psychol v.6 Maximum-likelihood estimation of paramerters of signal-detection theory and determination of confidence intervals-rating-method data Dorfman, DD;Alf E https://doi.org/10.1016/0022-2496(69)90019-4
  4. Psychometrika v.33 Maximum-likelihood estimation of parameters of signal detection theory- a direct solution Dorfman, DD https://doi.org/10.1007/BF02289677
  5. J Immunol Methods v.185 A modified ROC analysis for the selection of cut-off values and the definition of intermediate results of serodiagnostic tests Creiner M;Sohr D;Gobel P https://doi.org/10.1016/0022-1759(95)00121-P
  6. Prev Vet Med v.45 Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests Greiner M;Pfeiffer D;Smith RD https://doi.org/10.1016/S0167-5877(00)00115-X
  7. Radiology v.143 The meaning and use of the area under an ROC curve Hanley JA;McNeil BJ https://doi.org/10.1148/radiology.143.1.7063747
  8. Evaluating medical tests, objective and quantitative guidelines Kraemer HC
  9. N Engl J Med v.293 Primer on cetain elements of medical decision making McNeil BJ;Keeler E;Adelstein JS https://doi.org/10.1056/NEJM197507312930501
  10. Semin Nucl Med v.8 Basic principles of ROC analysis Metz CE https://doi.org/10.1016/S0001-2998(78)80014-2
  11. ROCFIT Metz CE;Shen J-H;Wang P-L;Kronman HB
  12. Health Care Man Sci v.3 Diagnosis of MRSA with neural networks and logistic regression approach Shang JS;Lin YE;Goetz AM https://doi.org/10.1023/A:1019018129822
  13. Science v.205 Assessment of diagnostic technologies Swets JA;Pickett RM;Whitehead SF;Getty DJ;Schnur JA;Swets JB;Freeman BA https://doi.org/10.1126/science.462188
  14. Psychol Bullet v.99 Form of empirical ROCs in discrimination and diagnostic tasks: Implications for theory and measurement of performance Swets JA https://doi.org/10.1037/0033-2909.99.2.181
  15. Science v.240 Measuring the accuracy of diagnostic systems Swets JA https://doi.org/10.1126/science.3287615
  16. Clin Chem v.32 The differential positive rate, a derivative of receiver operating characteristic curves useful in comparing tests and determining decision levels Ward CD
  17. Clinical decision analysis Weinstein MC;Fineberg HV