DOI QR코드

DOI QR Code

미생물 유래의 Epoxide Hydrolase를 이용한 Chiral Styrene Oxide 생산용 비대칭 광학분할시스템개발

Development of Asymmetric Resolution System for the Production of Chiral Styrene Oxide by Microbial Epoxide Hydrolase

  • 이지원 (경성대학교 공과대학 식품공학과) ;
  • 윤여준 (울산대학교 공과대학 화학공학과) ;
  • 이은열 (경성대학교 공과대학 식품공학과)
  • 발행 : 2002.10.01

초록

Apergillus niger LK의 epoxide hydrolase 활성을 이용하여 chiral styrene oxide를 제조할 수 있는 hollow-fiber 반응기 기반의 비대칭 분할 시스템을 개발하였다. 라세믹 styrene oxide 기질을 dodecane 유기용매에 용해시켜 hollow-fiber 반응기의 lumen 부위로 공급하였으며, 생촉매인 A. niger LK 미세분말은 shell 부위로 공급함으로써 막 표면에서 비대칭 분할 반응을 수행하였다. 반응 산물로 생성되는 phenyl-1,2-ethandiol에 의한 epoxide hydrolase 활성 저해효과를 감소시키기 위하여 2번째 hollow-fiber 반응기에서 완충용액을 이용하여 diol을 추출하여 제거시켰다. 2성분 용매를 사용한 cascade형 hollow-fiber 반응기 시스템을 이용하여 광학적으로 순수한 (ee > 99%) (5)-styrene oxide를 19.5% (이론 수율 대비 39%)의 수율로 얻을 수 있었다.

Asymmetric enantioselective resolution system using epoxide hydrolase activity of Aspergillus niger LK was developed and operated for the production of optically pure styrene oxide. Two-phase hollow-fiber reactor system was employed for the enhanced solubility of racemic styrene oxide in organic phase and protection of epoxide hydrolase activity in aqueous phase. For the removal of phenyl-1,2-ethandiol, the inhibitor of epoxide hydrolase, cascade hollow-fiber reactor system was also developed. Chiral (S)-styrene oxide (39 mM in dodecane) could be asymmetrically resolved with high enantiopurity (> 99% ee) using these reactor system.

키워드

참고문헌

  1. Current Opinion in Chem. Biology v.5 Synthetic applications of epoxide hydrolases Archelas, A.;R. Furstoss https://doi.org/10.1016/S1367-5931(00)00179-4
  2. Appl. Microbiol. Biotechnol. v.53 Resolution of 1,2-epoxyhexane by Rhodotorula glutinis using a two-phase membrane bioreactor Choi, W. J.;C. Y. Choi;J. A. M. de Bont;C. A. G. M Weijers https://doi.org/10.1007/s002530051606
  3. Appl. Microbiol. Biotechnol. v.54 Continuous production of enantiopure 1,2-epoxyhexane by yeast epoxide hydrolase in a two-phase membrane bioreactor Choi, W. J.;Choi, C. Y.;J. A. M. de Bont;C. A. G. M. Weijers https://doi.org/10.1007/s002530000451
  4. Biotechnol. Tech. v.12 Kinetic resolution for optically active epoxides by microbial enantioselective hydrolysis Choi, W. J.;E. C. Huh;H. J. Park;E. Y. Lee;C. Y. Choi https://doi.org/10.1023/A:1008825508904
  5. J. Biosci. Bioeng. v.88 Biocatalytic production of chiral epichlorohydrin in organic solvent Choi, W. J.;E. Y. Lee;S. J. Yoon;C. Y. Choi https://doi.org/10.1016/S1389-1723(00)80022-5
  6. Kor. J. Biotechnol. Bioeng. v.16 Development of hollow-fiber reactor system for the production of chiral 1,2-epoxy-7-octene by microbial enantioselective hydrolysis reaction Lee, E. Y.;H. S. Kim
  7. Kor. J. Biotechnol. Bioeng. v.14 Biocatalytic production of chiral epoxides Lee, E. Y.;W. J. Choi;S. J. Yoon;H. S. Kim;C. Y. Choi
  8. Tetrahedron Asymmetry v.12 An enzyme-triggered enantio-convergent cascade-reaction Mayer, S. F.;A. Steinreiber;R. V. A. Orru;K. Faber https://doi.org/10.1016/S0957-4166(01)00010-6
  9. Current Opinion in Biotechnol. v.12 Microbial epoxide hydrolases for preparative biotransformations Steinreiber, A.;K. Faber https://doi.org/10.1016/S0958-1669(01)00262-2
  10. Kor. J. Biotechnol. Bioeng. v.15 Production of chiral styrene oxide by microbial enantioselective hydrolysis reaction Yoon, S. J.;E. Y. Lee