DOI QR코드

DOI QR Code

녹두(Vigna radiata L.) Trypsin Inhibitor의 정제 및 약물학적 특성

Characterization and Pharmacological Effect of Mung Bean Trypsin Inhibitor

  • 발행 : 2002.10.01

초록

우리나라에서 식용으로 뿐만아니라 한방재료로 널리 사용되고 있는 녹두(vigna radiata L. wilczek) 로부터 trypsin inhibitor (Mung bean trypsin inhibitor, MBTI)를 분리정제하여 그 특성을 조사하였다 또한 병태동물모델 즉, septic shock induced guinea pig model을 이용하여 MBTI의 약물학적 효과를 평가하였다. MBTI의 분리 및 정제과정은 Sephadex C-50 chromatography, DEAE-celluloseion exchange chromatography 및 trypsin affinity column 을 차례로 이용하였다. 정제한 MBTI는 전기영동 및 아미노산 서열분석결과 분자량 약 8,000 Da 의 BBI-type (Bowman-birk inhibitor type)임을 알 수 있었으며 이들의 생화학적 특성을 구명하였다. 또한 pseudomonal elastase로 유도된 septic shock guinea pig model에서 MBTI 10 mg/kg를 전처치한 결과 hypotention shock 유발이 억제됨을 알 수 있었다.

A kypsin inhibitor was isolated and purified from Mung bean (Vigna radiata L. wilczek) which has been used as a galenic and traditional food. In addition, we evaluated the pharmacological effect of the mung bean trypsin inhibitor (MBTI) using septic shock induced guinea pig model. Purification was carried out by Sephadex G-50 gel filtration, DEAE-cellulose ion exchange chromatography, and trypsin affinity column. The molecular weight of MBTI was estimated to be about 8,000 Da by 20% SDS-PACE under reducing condition. The chemically determined partial amino acid sequences of the purified MBTI perfectly coincide with those of previously reported MBTI which is BBI type trypsin inhibito. (Bowman-birk inhibitor type). These results suggest that the purified MBTI is authentic. Hypotension shock was prevented by the pretreatment of the MBTI (10 mg/kg of the body weight) on the septic shock guinea pig model caused by psedomonal elastase.

키워드

참고문헌

  1. Handbook of proteolytic Enzymes Barrett, A. J.;N. D. Rawlings;J. F. Woessner
  2. J. Kor. Pharm. Sci. v.30 no.3 Evaluation of Pharmacological effect of Soybean trypsin inhibitor- Chondroitin sulfate congugates Choi, Y. L.;H. G. Nam;Y.H. Shin
  3. Plant Physiol v.61 Trypsin inhibitor in mung bean cotyledons Chrispeels, M. J.;B. Baumgartner https://doi.org/10.1104/pp.61.4.617
  4. Biochem. Biophys. Res. Commun. v.246 no.2 Effect of gabexate mesylate (FOY), a drug for serine proteinase-mediated diseases, on the nitric oxide pathway Colasanti, M.;T. Persichini;G. Venturini;E. Menegatti;G. M. Lauro;P. Ascenzi https://doi.org/10.1006/bbrc.1998.8642
  5. Arch.. Biochem. Biophys. v.95 Preparation and properties of two new chromogenic substrates of trypsin Erlanger, B. F.;N. Kokowsky;E. Cohen https://doi.org/10.1016/0003-9861(61)90145-X
  6. Anal. Biochem. v.142 Identification of cysteinecontaining peptides in protein digests by high-performance liquid chromatography Fullmer, C. S. https://doi.org/10.1016/0003-2697(84)90473-1
  7. J. Biol. Chem. v.251 no.3 Double-headed protease inhibitors from black-eyed peas Gennis, L.S.;C. R. Cantor
  8. Protease and Protease inhibitor Hayaishi, O.(ed)
  9. Br. J. Anaesth. v.81 no.6 Nafamostat mesilate, a kallikrein inhibitor, prevents pain on injection with propofol Iwama, H.;M. Nakane;S. Ohmori;T. Kaneko;M. Kato;K. Watanabe;A. Okuaki https://doi.org/10.1093/bja/81.6.963
  10. Biochem. Biophys. Acta. v.1157 Role of Hageman factor/Kallikrein-Kinin systemic pseudomonal elastase induced shock model Khan, M. M. H.;T. Yamamoto;H. Araki;Y. Shibuya;T. Kambara https://doi.org/10.1016/0304-4165(93)90055-D
  11. Biochem. Biophys. Acta. v.1182 Pesudomonal elastase injection causes low vascular resistant shock in guinea pigs Khan, M. M. H.;T. Yamamoto;H. Araki;Y. Ijiri;Y. Shibuya;M. Okamoto;T. Kambara https://doi.org/10.1016/0925-4439(93)90157-V
  12. J. Biochem. & Mol. Biol. v.33 no.2 Purification and characterization of serine protease inhibitors from Dolichos Lablab seed ; Prevention effects on pseudomonal elastase induced septic hypotention Koo, S. H.;Y. L. Choi;S. K. Choi;Y. H. Shin;Y. H. Kim;B. L. Lee
  13. Nature v.227 Cleavage of structural proteins during the assembly of the head of bacteriophage T4 Laemmli, U.K. https://doi.org/10.1038/227680a0
  14. Biotechniques v.6 Direct protein microsequencing from Immobilon-P transfer membrane LeGendre, N.;P. Matsudaira
  15. J. Biol. Chem. v.193 Protein measurement with the folin phenol reagent Lowry, O. H.;N. J. Rosebrough;A. L. Farr;R. J. Randall
  16. Kinin Ⅵ Maeda, H.;K. Maruo;T. Akaike;H. Kaminishi;Y. Hagiwara;Fritz, H.(ed.)
  17. Science v.224 Evolution of proteolytic enzymes Neurath, H. https://doi.org/10.1126/science.6369538
  18. Crit. Care. Med. v.24 no.11 Protective effects of human urinary trypsin inhibitor against trypsin-induced relaxation in rat aorta Ooka, T.;Y. Hatano;M. Yamamoto;K. Ogawa;S. Saika https://doi.org/10.1097/00003246-199611000-00022
  19. Protease inhibitors Inhibitors of serine protease Powers, J. C.;J. W. Harper;Barrett(ed.);Salvesen(ed.)
  20. Hypertension v.5 no.6 The effect of aprotinin (a serine protease inhibitor) on renal function and renin release Seto, S.;V. Kher;A. G. Scicli;W. H. Beierwaltes;O. A. Carretero https://doi.org/10.1161/01.HYP.5.6.893
  21. Bioactive Compatible Polymers v.11 no.1 Conjugation of succinylated gelatin to soybean trypsin inhibitor Shin, Y. H.;Y. Kojima;M. Otagiri;H. Maeda
  22. Immunopharmacology v.33 Futher evidence of bradykinin involvement in septic shock : reduction of kinin production in vivo and improved survival in rats by use of polymer tailored SBTI with longer t? Shin, Y.H.;T. Akaike;M. M. H. Khan;Y. Sakada;H. Maeda https://doi.org/10.1016/0162-3109(96)00088-4
  23. J. Pharm. Sci. v.78 Control of pharmaceutical properties of soybean trypsin inhibitor by conjugation with dextran. Ⅱ: Biopharmaceutical and pharmacological properties Takakura, Y.;T. Fujita;M. Hashida;H. Maeda;H. Sezaki https://doi.org/10.1002/jps.2600780310
  24. Plant Physiol. v.71 Amino acid sequence of mung bean trypsin inhibitor and its modified forms appearing during germination Wilson, K. A.;J. C. Chen https://doi.org/10.1104/pp.71.2.341
  25. Scientia Sinica(series B) v.15 no.3 Complete amino acid sequence of mungbean trypsin inhibitor Zhang, Y.;S. Luo;F. Tan;Z. Qi;L. Xu;A. Zhang