References
- J. Chromatogr. v.38 Tandem high-performance lipuid chromatography methods for resolution of lapachol and related naphthoquinones. Awang, D. V. C.;D. Kindack;B. A. Dawson. https://doi.org/10.1016/0021-9673(68)85073-3
- Planta Med. v.62 Antibacterial and antifungal compounds from Kigelia pinnata. Binutu, O. A.;K. E. Adesogan;J. I. Okagun. https://doi.org/10.1055/s-2006-957900
- FEMS Microbiol. Lett. v.69 An automated quantitative assay for fungal growth inhibition. Broekaert, W. F.;F. R. G. Terras;B. P. A. Cammue;J. Vanderleyden. https://doi.org/10.1111/j.1574-6968.1990.tb04174.x
- J. Food Prot. v.57 Inhibition of Staphylococcus aureus by olive phenolics in broth and in a model food system. Cassou, C. C.;G. J. E. Nychas. https://doi.org/10.4315/0362-028X-57.2.120
- Biosci. Biotechnol. Biochem. v.62 Antimicrobial activity of 4-hydroxybenzoic aicd and trans 4-hydroxycinnamic acid isolated and identified from rice hull. Cho, J. Y.;J. H. Moon;K. Y. Seong;K. H. Park. https://doi.org/10.1271/bbb.62.2273
- Food Sci. Biotechnol. v.9 Isolation and identification of azelaic acid and 3,4-dihydroxybenzoic acid from bukwheat hull as antimicrobial substances. Cho, J. Y.;H. K. Kim;S. J. Ma;J. H. Moon;K. H. Park.
- Natural Antimicrobial Systems and Food Preservation Dillon, V. M.;R. G. Board.
- J. Nat. Prod. v.61 Antitumor-promoting naphthoquinones from Catalpa ovata. Fujiwara, A.;T. Mori;A. Iida;S. Ueda;Y. Hano;T. Nomura;H. Tokuda;H. Nishino. https://doi.org/10.1021/np9800147
- Phytochemistry v.42 Antifungal and antibacterial naphthoquinones from Newbouldia laevis roots. Gatner, S.;J. L. Wolfender;M. Nianga;H. Stoeckli-Evans;K. Hostettmann. https://doi.org/10.1016/0031-9422(96)00135-5
- Planta Med. v.60 Comparision of antibacterial and antifungal activities of lapachol and β-lapachone. Guiraud, P.;R. Steiman;G. M. Campos-takaki;F. Seigle-Murandi;M. Buochberg. https://doi.org/10.1055/s-2006-959504
- J. Microbiol. Biotechnol. v.11 Effect of Scutellariae Radix as a novel antibacterial herb on the ppk(polyphosphate kinase) mutant of Salmonella typhimurium. Hahm, D. H.;M. J. Yeom;E. H. Lee;I. Shim;H. J. Lee;H. Y. Kim.
- Arch Microbiol. v.167 Respiratory stimulation and generation of superoxide radicals in Pseudomonas aeruginosa by fungal naphthoquinones. Haraguchi, H.;K. Yokoyama;S. Oike;M. Ito;H. Nozaki. https://doi.org/10.1007/s002030050409
- Biochem. Biophys. Acta v.7 Uncoupling and inhibition of oxidative phosphorylation by 2-hydroxy-3-alkyl-1,4-naphthoquinones. Howland, J. L.
- J. Wood Research Soc., Jpn. v.8 The chemistry of wood extractives. Ⅲ. Constituents of Catalpa ovata G. Don. Imamura, H.;M. Suda.
- J. Microbiol. Biotechnol. v.12 Effect of heat treatments on the antimicrobial activities of garlic (Allium sativum). Kim, J. Y.;Y. C. Lee;K. S. Kim.
- J. Microbiol. Biotechnol. v.11 Effects of storage temperature and pH on the stability of antibacterial effectiveness of garlic extract against Escherichia coli. Kim, M. H.;Y. D. Kang;K. H. Kyung.
- M.S. thesis Studies on the chemical components and physiological activities of Catalpa ovata. Kim, M. S.
- Kor. J. Food Sci. Technol. v.29 Isolation and characterization of benzoic acid with antimicrobial activity from needle of Pinus densiflora. Kuk, J. H.;S. J. Ma;K. H. Park.
- Natural Medicines v.49 Studies on the constituents of Catalpa species. Monoterpene glycosides from the fallen leaves of Catalpa ovata G. Don. Machida, K.;M. Ando;Y. Yaoita;R. Kakuda;M. Kikuchi.
- J. Food Prot. v.62 Antimicrobial activity of the essential oils of Thymus vulgaris L. measured using a bioimpedometric method. Marino, M.;C. Bersani;G. Comi. https://doi.org/10.4315/0362-028X-62.9.1017
- Nat. Prod. Lett. v.14 Isolation and structural determination of a novel antimicrobial compound from the root of Pulsatilla koreana. Moon, J. H.;S. J. Ma;H. H. Lee;N. Watanabe;K. Sakata;K. H. Park. https://doi.org/10.1080/10575630008041248
- Chem. Pharm. Bull. v.37 A mutagenic new iridoid in the water extract of Catalpae fructus. Nozaka, T.;F. Watanabe;M. Ishino;I. Morimoto;H. Kondoh;K. Koyama;S. Natori. https://doi.org/10.1248/cpb.37.2838
- Phytochemistry v.14 Two new flavone glycosides from Catalpa ovata. Okuda, T.;T. Yoshida;I. Ono.
- J. Microbiol. Biotechnol. v.11 New antimicrobial activity from Korean Radish Seeds (Raphanus sativus L.). Park, J. H.;H. K. Shin;C. W. Hwang.
- Phytother. Res. v.12 Antifungal activity of some Bignoniaceae found in Malaysia. Rasadah, M. A.;J. H. Peter;T. S. Hoo. https://doi.org/10.1002/(SICI)1099-1573(199808)12:5<331::AID-PTR305>3.0.CO;2-W
- Methods of Preparation for Electron Microscopy Robinson, D. G.;U. Ehlers;R. Herken;B. Herrmann;F. Mayer;F.-W. Schurmann.
- Agric. Biol. Chem. v.48 Antimicrobial and respiration-inhibitory activities of oosporein. Taniguchi, M.;T. Kawaguchi;T. Tanaka;S. Oi. https://doi.org/10.1271/bbb1961.48.1065
- J. Ethnopharmacol. v.56 Antimicrobial activity of flavonoids from leaves of Tagetes minuta. Tereschuk, M. L.;M. V. Q. Riera;G. R. Castro;L. R. Abdala. https://doi.org/10.1016/S0378-8741(97)00038-X
- J. Food Prot. v.61 inhibition of Aspergillus niger and Aspergillus flavus by some herbs and spices. Yin, M. C.;W. S. Chen. https://doi.org/10.4315/0362-028X-61.1.123
- J. Food Safety v.9 Spices and herbs. Their antimicrobial activity and its determination. Zaika, L. L. https://doi.org/10.1111/j.1745-4565.1988.tb00511.x
- Planta Med. v.62 Two flavones from Artemisia giraldii adn their antimocrobial activity. Zheng, W. F.;R. X. Tan;L. Yan;Z. L. Liu. https://doi.org/10.1055/s-2006-957841