Antibacterial and Antifungal Activities of a Naphthoquinone Derivative Isolated from the Fruits of Catalpa ovata G.$D_{ON}$

  • Kuk, Ju-Hee (Division of Applied Bioscience & Biotechnology and Institute of Agricultural Science & Technology, Chonnam National University) ;
  • Ma, Seung-Jin (Institute for Chemical Research, Kyoto University) ;
  • Moon, Jae-Hak (Department of Nutrition, School of Medicine, The University of Tokushima, Japan) ;
  • Kim, Kil-Yong (Division of Applied Bioscience & Biotechnology and Institute of Agricultural Science & Technology, Chonnam National University) ;
  • Choi, Sang-Ho (Division of Applied Bioscience & Biotechnology and Institute of Agricultural Science & Technology, Chonnam National University) ;
  • Park, Keun-Hyung (Division of Applied Bioscience & Biotechnology and Institute of Agricultural Science & Technology, Chonnam National University)
  • Published : 2002.10.01

Abstract

An antimicrobial compound was isolated from the MeOH extract of Catalpa ovata G.$D_{ON}$ fruits, and its structure was Identified as 4,9-dihydroxy-2,2-dimethyl-3,4-Uihydronaphtho[2,3-b]pyran-5,10-dione (HMNP). The antimicrobial activity of the Un was determined by measuring the dose-response inhibiton of microbial growth in liquid cultures and then compared with that of lapachol, a well known antimicrobial 1,4-naphthoquinone. The antimicrobial activity of the HMNP was more effective than that of lapachol over a wide range of test organisms. Gram-positive bacteria, yeast, and fungi ($IC_{50}$ $20-75\muM$) were found to be more sensitive to the HMNP than Cram-negative bacteria ($IC_{50}$ > $100\muM$). The HMNP also inhibited germination of spores of many fungi. The morphological defurmation of the fungal spores was induced by the treatment of HMNP, as illustrated by Scanning Electron Microscopy (SEM).

Keywords

References

  1. J. Chromatogr. v.38 Tandem high-performance lipuid chromatography methods for resolution of lapachol and related naphthoquinones. Awang, D. V. C.;D. Kindack;B. A. Dawson. https://doi.org/10.1016/0021-9673(68)85073-3
  2. Planta Med. v.62 Antibacterial and antifungal compounds from Kigelia pinnata. Binutu, O. A.;K. E. Adesogan;J. I. Okagun. https://doi.org/10.1055/s-2006-957900
  3. FEMS Microbiol. Lett. v.69 An automated quantitative assay for fungal growth inhibition. Broekaert, W. F.;F. R. G. Terras;B. P. A. Cammue;J. Vanderleyden. https://doi.org/10.1111/j.1574-6968.1990.tb04174.x
  4. J. Food Prot. v.57 Inhibition of Staphylococcus aureus by olive phenolics in broth and in a model food system. Cassou, C. C.;G. J. E. Nychas. https://doi.org/10.4315/0362-028X-57.2.120
  5. Biosci. Biotechnol. Biochem. v.62 Antimicrobial activity of 4-hydroxybenzoic aicd and trans 4-hydroxycinnamic acid isolated and identified from rice hull. Cho, J. Y.;J. H. Moon;K. Y. Seong;K. H. Park. https://doi.org/10.1271/bbb.62.2273
  6. Food Sci. Biotechnol. v.9 Isolation and identification of azelaic acid and 3,4-dihydroxybenzoic acid from bukwheat hull as antimicrobial substances. Cho, J. Y.;H. K. Kim;S. J. Ma;J. H. Moon;K. H. Park.
  7. Natural Antimicrobial Systems and Food Preservation Dillon, V. M.;R. G. Board.
  8. J. Nat. Prod. v.61 Antitumor-promoting naphthoquinones from Catalpa ovata. Fujiwara, A.;T. Mori;A. Iida;S. Ueda;Y. Hano;T. Nomura;H. Tokuda;H. Nishino. https://doi.org/10.1021/np9800147
  9. Phytochemistry v.42 Antifungal and antibacterial naphthoquinones from Newbouldia laevis roots. Gatner, S.;J. L. Wolfender;M. Nianga;H. Stoeckli-Evans;K. Hostettmann. https://doi.org/10.1016/0031-9422(96)00135-5
  10. Planta Med. v.60 Comparision of antibacterial and antifungal activities of lapachol and β-lapachone. Guiraud, P.;R. Steiman;G. M. Campos-takaki;F. Seigle-Murandi;M. Buochberg. https://doi.org/10.1055/s-2006-959504
  11. J. Microbiol. Biotechnol. v.11 Effect of Scutellariae Radix as a novel antibacterial herb on the ppk(polyphosphate kinase) mutant of Salmonella typhimurium. Hahm, D. H.;M. J. Yeom;E. H. Lee;I. Shim;H. J. Lee;H. Y. Kim.
  12. Arch Microbiol. v.167 Respiratory stimulation and generation of superoxide radicals in Pseudomonas aeruginosa by fungal naphthoquinones. Haraguchi, H.;K. Yokoyama;S. Oike;M. Ito;H. Nozaki. https://doi.org/10.1007/s002030050409
  13. Biochem. Biophys. Acta v.7 Uncoupling and inhibition of oxidative phosphorylation by 2-hydroxy-3-alkyl-1,4-naphthoquinones. Howland, J. L.
  14. J. Wood Research Soc., Jpn. v.8 The chemistry of wood extractives. Ⅲ. Constituents of Catalpa ovata G. Don. Imamura, H.;M. Suda.
  15. J. Microbiol. Biotechnol. v.12 Effect of heat treatments on the antimicrobial activities of garlic (Allium sativum). Kim, J. Y.;Y. C. Lee;K. S. Kim.
  16. J. Microbiol. Biotechnol. v.11 Effects of storage temperature and pH on the stability of antibacterial effectiveness of garlic extract against Escherichia coli. Kim, M. H.;Y. D. Kang;K. H. Kyung.
  17. M.S. thesis Studies on the chemical components and physiological activities of Catalpa ovata. Kim, M. S.
  18. Kor. J. Food Sci. Technol. v.29 Isolation and characterization of benzoic acid with antimicrobial activity from needle of Pinus densiflora. Kuk, J. H.;S. J. Ma;K. H. Park.
  19. Natural Medicines v.49 Studies on the constituents of Catalpa species. Monoterpene glycosides from the fallen leaves of Catalpa ovata G. Don. Machida, K.;M. Ando;Y. Yaoita;R. Kakuda;M. Kikuchi.
  20. J. Food Prot. v.62 Antimicrobial activity of the essential oils of Thymus vulgaris L. measured using a bioimpedometric method. Marino, M.;C. Bersani;G. Comi. https://doi.org/10.4315/0362-028X-62.9.1017
  21. Nat. Prod. Lett. v.14 Isolation and structural determination of a novel antimicrobial compound from the root of Pulsatilla koreana. Moon, J. H.;S. J. Ma;H. H. Lee;N. Watanabe;K. Sakata;K. H. Park. https://doi.org/10.1080/10575630008041248
  22. Chem. Pharm. Bull. v.37 A mutagenic new iridoid in the water extract of Catalpae fructus. Nozaka, T.;F. Watanabe;M. Ishino;I. Morimoto;H. Kondoh;K. Koyama;S. Natori. https://doi.org/10.1248/cpb.37.2838
  23. Phytochemistry v.14 Two new flavone glycosides from Catalpa ovata. Okuda, T.;T. Yoshida;I. Ono.
  24. J. Microbiol. Biotechnol. v.11 New antimicrobial activity from Korean Radish Seeds (Raphanus sativus L.). Park, J. H.;H. K. Shin;C. W. Hwang.
  25. Phytother. Res. v.12 Antifungal activity of some Bignoniaceae found in Malaysia. Rasadah, M. A.;J. H. Peter;T. S. Hoo. https://doi.org/10.1002/(SICI)1099-1573(199808)12:5<331::AID-PTR305>3.0.CO;2-W
  26. Methods of Preparation for Electron Microscopy Robinson, D. G.;U. Ehlers;R. Herken;B. Herrmann;F. Mayer;F.-W. Schurmann.
  27. Agric. Biol. Chem. v.48 Antimicrobial and respiration-inhibitory activities of oosporein. Taniguchi, M.;T. Kawaguchi;T. Tanaka;S. Oi. https://doi.org/10.1271/bbb1961.48.1065
  28. J. Ethnopharmacol. v.56 Antimicrobial activity of flavonoids from leaves of Tagetes minuta. Tereschuk, M. L.;M. V. Q. Riera;G. R. Castro;L. R. Abdala. https://doi.org/10.1016/S0378-8741(97)00038-X
  29. J. Food Prot. v.61 inhibition of Aspergillus niger and Aspergillus flavus by some herbs and spices. Yin, M. C.;W. S. Chen. https://doi.org/10.4315/0362-028X-61.1.123
  30. J. Food Safety v.9 Spices and herbs. Their antimicrobial activity and its determination. Zaika, L. L. https://doi.org/10.1111/j.1745-4565.1988.tb00511.x
  31. Planta Med. v.62 Two flavones from Artemisia giraldii adn their antimocrobial activity. Zheng, W. F.;R. X. Tan;L. Yan;Z. L. Liu. https://doi.org/10.1055/s-2006-957841