References
- Cell v.47 One binding site determines sequence specificity of Tetrahymena pre-rRNA self-slicing, trans-splicing, and RNA enzyme activity. Been, M.;T. Cech. https://doi.org/10.1016/0092-8674(86)90443-5
- Science v.255 Modulation of activity of the promoter of the human MDR1 gene by Ras and p53. Chin, K. V.;K. Ueda;I. Pastan;M. M. Gottesman. https://doi.org/10.1126/science.1346476
- Science v.265 Crystal structure of a p53 tumor suppressor-DNA complex: Understanding tumorigenic mutations. Cho, Y.;S. Gorina;P. D. Jeffrey;N. P. Paveltich. https://doi.org/10.1126/science.8023157
- Cell v.61 A genetic model for colorectal tumorigenesis. Fearon, E. R.;B. Vogelstein. https://doi.org/10.1016/0092-8674(90)90186-I
- Nat. Genet. v.9 A mutant p53 transgene accelerates tumor development in heterozygous but not mullizygous p53-deficient mice. Harvey, M.;H. Vogel;D. Morris;A. Bradley;A. Bernstein;L. A. Donehower. https://doi.org/10.1038/ng0395-305
- Science v.253 p53 mutations in human cancers. Hollstein, M.;D. Sidransky;B. Vogelstein;C. C. Harri. https://doi.org/10.1126/science.1905840
- J. Microbiol. Biotechnol. v.10 Inhibition of gastric cancer cell cycle progression by γ-tubulin antisense oligonucleotides. Hwang, S.-H.;M.-W. Kim;S. K. Park;J. W. Noh;I.-S. Han.
- Nature Med. v.2 Tagging ribozyme reaction sites to follow trans-splicing in mammalian cells. Jones, J. T.;S.-W. Lee;B. A. Sullenger. https://doi.org/10.1038/nm0696-643
- J. Microbiol. Biotechnol. v.10 Structural study of antisense dimers, modified adenosine-thymidine phosphorothioate. Jung, K.-E.;M. Yang;K. Lee;H. Lim;J. Jung;B. Koo;L. S. Jeong;D.-H. Sjin;C.-H. Lee;Y.-H. Cho;Y. Lim.
- Science v.25 Oncogenic forms of p53 inhibit -53-regulated gene expression. Kern, S. E.;J. A. Pietenpo;S. Thiagalingam;A. Seymour;K. W. Kinzler;B. Vogelstein.
- J. Microbiol. Biotechnol. v.10 A new and rapid testing method for drug susceptibility of Mycobacterium leprae using RT-PCR. Kim, M. J.;J. Lee;J. C. You.
- J. Microbiol. Biotechnol. v.10 Rapid identification of Lactobacillus plantarum in Kinchi using polymerase chain reactionl Kim, T.-W.;S.-G. Min;D.-H. Choi;J.-S. Jo;H.-Y. Kim.
- Science v.280 Ribozyme-mediated repair of sickle β-globin mRNA in erythrocyte precursors. Lan, N.;R. p. Howrey;S.-W. Lee;C. A. Smith;B. A. Sullenger. https://doi.org/10.1126/science.280.5369.1593
- Mol. Ther. v.2 Enhancing RNA repair efficiency by combining trans-splicing ribozymes that recognize different accessible sites on a target RNA. lan, N.;B. L. Rooney;S.-W. Lee;.R. P. Howrey;C. A. Smith;B. A. Sullenger. https://doi.org/10.1006/mthe.2000.0125
- Ann. Oncol. v.5 Molecular biology of breast cancer. Lemoine, N. R.
- Cell v.88 p53, the cellular gatekeeper for growth and division. Levine, A. J. https://doi.org/10.1016/S0092-8674(00)81871-1
- Science v.266 p53 status and the efficacy of cancer therapy in vivo. Lowe, S. W.;S. Bodis;A. McClatchey;L. Remington;H. E. Ruley;D. E. Fisher;D. E. Housman;T. Jacks. https://doi.org/10.1126/science.7973635
- Nat. Genet. v.18 Ribozyme-mediated trans-splicing of a trinucleotide repeat. Phylactou, L. A.;C. Darrah;M. A. J. Wood. https://doi.org/10.1038/ng0498-378
- Acta Oncol. v.40 p53 gene replacement for cancer-interactions with DNA damaging agents, Roth, J. A.;S. F. Grammer;S. G. Swisher;R. Komaki;J. Nemunaitis;J. Merritt;R. E. Meyn. https://doi.org/10.1080/02841860152619160
- J. Microbiol. Biotechnol. v.10 In vitro selection of the 2-fluoro-2-deoxyribonucleotide decoy RNA inhibitor of myasthenic autoantibodies. Seo, H.-S.;S.-W. Lee.
- Nature v.317 Ricozyme-mediated repair of defective mRNA by targeted trans-splicing. Sullenger, B. A.;T. R. Cech.
- J. NIH Res. v.7 RNA repair: A new Possibility for gene therapy. Sullenger, B. A.;T. R. Cech.
- Nature v.415 p53 mutant mice that display early ageing-associated phenotypes. Tyner, S. D.;S. Venkatachalam;J. Choi;S. Jones;N. Ghebranious;H. Igelmann;X. Lu;G. Soron;B. Cooper;C. Brayton;H. S. Park;T. Thompson;G. Karsenty;A. Bradley;L. A. Donehower. https://doi.org/10.1038/415045a
- Proc. Natl. Acad. Sci. USA v.97 Induction of wild-type p53 activity in human cancer cells by ribozymes that repair mutant p53 transcripts. Watanabe, T.;B. A. Sullenger. https://doi.org/10.1073/pnas.150104097
- Cell Growth Differ. v.4 Overexpression of wild-type p53 alters growth and differentiation of normal human keratinocytes but human papillomavirus-expressing cell lines. Woodworth, C. D.;H. Wang;S. Simpson;L. M. Alvarez-Salas;V. Notario.