Ribozyme-Mediated Replacement of p53 RNA by Targeted Trans-Splicing

  • Published : 2002.10.01

Abstract

In more than half of human tumors, the p53 tumor suppressor gene is mutated. Thus, restoration of wild-type p53 activity by repair of mutant RNA could be a potentially promissing approach to cancer treatment. To explore the potential use of RNA repair for cancer therapy, trans-splicing group I ribozymes were developed that could replace mutant p53 RNA with RNA sequence attached to the 3'end of ribozymes. By employing a mapping library of ribozymes, we first determined which regions of the p53 RNA are accessible to ribozymes, and found that the leader sequences upstream of the AUG start codon appeared to be particularly accessible. Next, trans-splicing ribozymes were generated that specifically recognized the sequences around these accessible regions. Subsequently, the ribozymes reacted with and altered the p53 transcripts by transferring a 3'exon tag sequence onto the targeted p53 RNA with high fidelity. Thus, these ribozymes could be utilized to repair mutant p53 in tumors, which would revert the neoplastic phenotype.

Keywords

References

  1. Cell v.47 One binding site determines sequence specificity of Tetrahymena pre-rRNA self-slicing, trans-splicing, and RNA enzyme activity. Been, M.;T. Cech. https://doi.org/10.1016/0092-8674(86)90443-5
  2. Science v.255 Modulation of activity of the promoter of the human MDR1 gene by Ras and p53. Chin, K. V.;K. Ueda;I. Pastan;M. M. Gottesman. https://doi.org/10.1126/science.1346476
  3. Science v.265 Crystal structure of a p53 tumor suppressor-DNA complex: Understanding tumorigenic mutations. Cho, Y.;S. Gorina;P. D. Jeffrey;N. P. Paveltich. https://doi.org/10.1126/science.8023157
  4. Cell v.61 A genetic model for colorectal tumorigenesis. Fearon, E. R.;B. Vogelstein. https://doi.org/10.1016/0092-8674(90)90186-I
  5. Nat. Genet. v.9 A mutant p53 transgene accelerates tumor development in heterozygous but not mullizygous p53-deficient mice. Harvey, M.;H. Vogel;D. Morris;A. Bradley;A. Bernstein;L. A. Donehower. https://doi.org/10.1038/ng0395-305
  6. Science v.253 p53 mutations in human cancers. Hollstein, M.;D. Sidransky;B. Vogelstein;C. C. Harri. https://doi.org/10.1126/science.1905840
  7. J. Microbiol. Biotechnol. v.10 Inhibition of gastric cancer cell cycle progression by γ-tubulin antisense oligonucleotides. Hwang, S.-H.;M.-W. Kim;S. K. Park;J. W. Noh;I.-S. Han.
  8. Nature Med. v.2 Tagging ribozyme reaction sites to follow trans-splicing in mammalian cells. Jones, J. T.;S.-W. Lee;B. A. Sullenger. https://doi.org/10.1038/nm0696-643
  9. J. Microbiol. Biotechnol. v.10 Structural study of antisense dimers, modified adenosine-thymidine phosphorothioate. Jung, K.-E.;M. Yang;K. Lee;H. Lim;J. Jung;B. Koo;L. S. Jeong;D.-H. Sjin;C.-H. Lee;Y.-H. Cho;Y. Lim.
  10. Science v.25 Oncogenic forms of p53 inhibit -53-regulated gene expression. Kern, S. E.;J. A. Pietenpo;S. Thiagalingam;A. Seymour;K. W. Kinzler;B. Vogelstein.
  11. J. Microbiol. Biotechnol. v.10 A new and rapid testing method for drug susceptibility of Mycobacterium leprae using RT-PCR. Kim, M. J.;J. Lee;J. C. You.
  12. J. Microbiol. Biotechnol. v.10 Rapid identification of Lactobacillus plantarum in Kinchi using polymerase chain reactionl Kim, T.-W.;S.-G. Min;D.-H. Choi;J.-S. Jo;H.-Y. Kim.
  13. Science v.280 Ribozyme-mediated repair of sickle β-globin mRNA in erythrocyte precursors. Lan, N.;R. p. Howrey;S.-W. Lee;C. A. Smith;B. A. Sullenger. https://doi.org/10.1126/science.280.5369.1593
  14. Mol. Ther. v.2 Enhancing RNA repair efficiency by combining trans-splicing ribozymes that recognize different accessible sites on a target RNA. lan, N.;B. L. Rooney;S.-W. Lee;.R. P. Howrey;C. A. Smith;B. A. Sullenger. https://doi.org/10.1006/mthe.2000.0125
  15. Ann. Oncol. v.5 Molecular biology of breast cancer. Lemoine, N. R.
  16. Cell v.88 p53, the cellular gatekeeper for growth and division. Levine, A. J. https://doi.org/10.1016/S0092-8674(00)81871-1
  17. Science v.266 p53 status and the efficacy of cancer therapy in vivo. Lowe, S. W.;S. Bodis;A. McClatchey;L. Remington;H. E. Ruley;D. E. Fisher;D. E. Housman;T. Jacks. https://doi.org/10.1126/science.7973635
  18. Nat. Genet. v.18 Ribozyme-mediated trans-splicing of a trinucleotide repeat. Phylactou, L. A.;C. Darrah;M. A. J. Wood. https://doi.org/10.1038/ng0498-378
  19. Acta Oncol. v.40 p53 gene replacement for cancer-interactions with DNA damaging agents, Roth, J. A.;S. F. Grammer;S. G. Swisher;R. Komaki;J. Nemunaitis;J. Merritt;R. E. Meyn. https://doi.org/10.1080/02841860152619160
  20. J. Microbiol. Biotechnol. v.10 In vitro selection of the 2-fluoro-2-deoxyribonucleotide decoy RNA inhibitor of myasthenic autoantibodies. Seo, H.-S.;S.-W. Lee.
  21. Nature v.317 Ricozyme-mediated repair of defective mRNA by targeted trans-splicing. Sullenger, B. A.;T. R. Cech.
  22. J. NIH Res. v.7 RNA repair: A new Possibility for gene therapy. Sullenger, B. A.;T. R. Cech.
  23. Nature v.415 p53 mutant mice that display early ageing-associated phenotypes. Tyner, S. D.;S. Venkatachalam;J. Choi;S. Jones;N. Ghebranious;H. Igelmann;X. Lu;G. Soron;B. Cooper;C. Brayton;H. S. Park;T. Thompson;G. Karsenty;A. Bradley;L. A. Donehower. https://doi.org/10.1038/415045a
  24. Proc. Natl. Acad. Sci. USA v.97 Induction of wild-type p53 activity in human cancer cells by ribozymes that repair mutant p53 transcripts. Watanabe, T.;B. A. Sullenger. https://doi.org/10.1073/pnas.150104097
  25. Cell Growth Differ. v.4 Overexpression of wild-type p53 alters growth and differentiation of normal human keratinocytes but human papillomavirus-expressing cell lines. Woodworth, C. D.;H. Wang;S. Simpson;L. M. Alvarez-Salas;V. Notario.