Cloning and Expression of the Aminopeptidase Gene from the Bacillus lichenformis In Bacillus subtilis

  • Published : 2002.10.01

Abstract

A gene (hap) encoding aminopeptidase from the chromosomal DNA of Bacillus licheniformis was cloned. The gene is 1,347 bp long and encodes a 449 amino acid preproprotein with a major mature region of 401 amino acids (calculated molecular mass 43,241 Da). N-Terminal sequence of the purified protein revealed a potential presence of N-terminal propeptide. The deduced primary amino acid sequence and the mass analysis of the purified protein suggested that a C-terminal peptide YSSVAQ was also cleaved off by a possible endogeneous protease. Tho amino acid sequence displayed 58% identity with that of the aminopeptidase from alkaliphilic Bacillus halodurans. This bacterial enzyme was overexpressed in recombinant Escherichia coli and Bacillus subtilis cells. Clones containing the intact hap gene, including its own promoter and signal sequence, gave rise to the synthesis of extracellular and thrmostable enzyme by B. subtilis transformants. The secreted protein exhibited the same biochemical properties and the similar apparent molecular mass as the B. lichenzyormis original enzyme.

Keywords

References

  1. Eur. J. Biochem. v.205 Leucine aminopeptidase from Arabidopsis thaliana, molecular evidence for a phylogenetically conserved enzyme of protein turnover in higher plants. Bartling, D;E. W. Weiler. https://doi.org/10.1111/j.1432-1033.1992.tb16796.x
  2. Bioprocess Technol. v.12 Methods for removing N-terminal methionine from recombinant proteins. Ben-Bassat, A.
  3. Biochim. Biophys. Acta. v.1480 A non-specific aminopeptidase from Aspergillus. Blinkovsky, A. M.;T. Byun;K. M. Brown;E. J. Golightly;A. V. Klotz. https://doi.org/10.1016/S0167-4838(00)00064-9
  4. Gene v.122 A series of shuttle vectors for Bacillus subtilis and Escherichia coli. Bruckner, R. https://doi.org/10.1016/0378-1119(92)90048-T
  5. Biochem. Biophys. Res. Commun. v.281 Mutation of the C-terminal end of cathepsin K affect proenzyme secretion and intracellular maturation. Claveau, D.;D. Riendeau. https://doi.org/10.1006/bbrc.2001.4394
  6. Nucleic Acids Res. v.1 High effciency transformation of E. coli by high voltage electroporation. Dower, W. J.;J. F. Miller;C. W. Ragsdale.
  7. FEMS Microbiol. Rev. v.18 Bacterial aminopeptidases: Properties and functions. Gonzales, T.;J. Robert-Baudouy. https://doi.org/10.1111/j.1574-6976.1996.tb00247.x
  8. J. Microbiol. Biotechnol. v.10 Regulation of cycloinulooligosaccharide fructanotransferase synthesis in Bacillus marcerans and B. Subtilis. Kim, H. Y.;Y. J. Choi.
  9. Mol. Cells v.7 Improvement of the production of foreign proteins using a heterologous secretion vector system in Bacillus subtilis: Effects of resistance to glucose-mediated catabolic repression. Kim, S. I.;Y. S. Nam;S. Y. Lee.
  10. Nucleic Acids Res. v.8 Rapid isolation of high-molecular-weight plant DNA. Murray, M. G.;W. F. Thompson. https://doi.org/10.1093/nar/8.19.4321
  11. Biochim. Biophys. Acta v.1433 Molecular cloning and expression in Escherichia coli of the extracellular ecdoprotease of Aeromonas caviae T-64, apro-aminopeptidase processing enzyme. Nirasawa, S.;Y. Nakajima;Z.-Z. Zhang;M. Yoshida;K. Hayashi. https://doi.org/10.1016/S0167-4838(99)00158-2
  12. FEBS Lett. v.400 Isolation and characterization of new C-terminal cubctitutioin mutations affecting secretion of polygalacturonase in Erwinia carotovora ssp. Carotovora. Palomaki, T.;H. T. Saarilahti. https://doi.org/10.1016/S0014-5793(96)01369-5
  13. J. Microbiol. Biotechnol. v.10 Improved T-vecter for the cloning of PCR DNA using green fluorescent protein. Park, K. S.;S. W. Park;S. Y. Choi.
  14. Arch. Biochem. Biophys. v.186 no.2 Isolation and properties of an aminopeptiase from Bacillus licheniformis. Rodriguez-Absi, J.;J. M. Prescott. https://doi.org/10.1016/0003-9861(78)90449-6
  15. Molecular Cloning: A Laboratory Manual(2nd ed.) Sambrook, J.;E. F. Fritsch;T. Maniatis.
  16. Practical Giude to Protein and Peptide Purification for Microsequencing Enzymatic digestion of proteins and HPLC peptide isolation. Stone, K.;M. B. LoPresti;J. M. Crawford;R. DeAngelis;K. R. Williams.
  17. Extremophiles v.3 An improved physical and genetic map of the genome of alkaliphilic Bacillus sp. C-125. Takami, H.;K. Nakasone;C. Hirama;Y. Takaki;N. Masui;F. Fuji;Y. Nakamura;A. Inoue. https://doi.org/10.1007/s007920050095
  18. Microbiol. Mol. Biol. Rev. v.64 Signal peptide-dependent protein transport in Bacillus subtilis: A genome-based survey of the secretome. Tjalsma, H.;A. Bolhuis;J. D. H. Jongbloed;S. Bron;J. M. van Dijl. https://doi.org/10.1128/MMBR.64.3.515-547.2000
  19. J. Microbiol. Methods v.34 High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacilus subtilis and Bacillus licheniformis. Xue, G. P.;J. S. Johnson;B. P. Dalrymple. https://doi.org/10.1016/S0167-7012(98)00087-6
  20. Biochem. J. v.350 Function of the N-terminal propeptide of an aminopeptidase from Vibrio proteolyticus. Zhang, Z. Z.;S. Nirasawa;Y. Nakajima;M. Yoshida;K. Hayashi. https://doi.org/10.1042/0264-6021:3500671