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Abstract

We have theoretically investigated steady-state carrier transport and current self-oscillation in negative-effective-mass
(NEM) p'pp” diodes. The current self-oscillation here is a result of the formation and traveling of electric field domains
in the p base having a NEM. The dependence of self-oscillating frequency on the applied dc voltage is obtained by

detailed numerical simulations. In the calculations, we have considered the scatterings by carrier-impurity, carrier-acoustic

phonon, carrier-polar-phonon, and carrier-nonpolar-phonon-hole interactions. This kind of NEM oscillator allows us to

reach a current oscillation with terahertz frequency, thus it may be used as a broadband source of terahertz radiation.

1. Introduction

Nonlinear dynamics of negative-effective-mass (NEM)
semiconductors [1-6] has recently been a very active
research field, mainly due to the potential applicability
of terahertz (THz) oscillators [2,4]. When an p'pp’
NEM diode is subject to a dc bias, damped or undamped
current self-oscillating mode shows up depending on the
applied dc bias. The undamped mode gives rise to
periodically oscillating current related to the formation
and traveling of high-electric-field domains. In contrast,
when an external electromagnetic radiation acts on the
de-biased NEM p'pp” diode, the interesting physics
phenomena increase dramatically, including current
synchronization, mode locking, and spatio-temporal
chaos. Theoretically, these current-voltage characteristics
can be simulated as the response of the carriers in the
p-base of p'pp" NEM diode to a time-dependent external
driving voltage. In this paper, we theoretically investigate
current-voltage characteristics of the p'pp” NEM diode
driven only by a dc bias. We yield some complex
patterns of time-dependent self-oscillating currents, and

calculate the dependence of the self-oscillating frequencies
on the dc biases.

2. Velocity-Field Relation of Nem
Semiconductors

We abstract an analytical NEM model dispersion
from the ground subband of a p-type quantum well
QW) [1,7] as follows,
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in which k = (ks, k, k;) is the wave-vector, m,
= Mm/{(M~+ m), and M, = Mwm/(M— m) with m and
M two effective masses, and 4 and & are two energy-
band-related energies. When M— m, the dispersion (1)
reduces to a parabolic band. In the calculations, we set
co=0.1eV, 4=002eV, m=008Smy (mp is the
free electron mass), and M = 0.44 my, respectively. By
the balance-equation theory [8], we have calculated carrier
drift velocity v; as a function of steady-state electric
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field E in the x-direction at lattice temperature T = 77 X,
by accounting for the scatterings from carrier-impurity,
carrier-acoustic-phonon (deformation and piezoelectric),
carrier-polar-optic-phonon, and carrier-nonpolar-optic-
phonon. In Fig. 1 we show the calculated carrier drift
velocity v; as a function of steady-state field E at
lattice temperature T = 77 K. In the case of the parabolic
band (solid circles), drift velocity monotonously
increases with increasing electric field. In contrast, the
velocity-field curve in the NEM nonparabolic case
(solid squares) has a N-shaped negative differential
velocity (NDV) with a peak velocity about 2.04 x 10’
cmfs at the critical electric field of 6 kV/cm. After
about E > 22 kVjcm, the differential velocity becomes
positive. The solid line in Fig. 1 is an analytical fit to
the balance-equation-calculated N-shaped velocity-field
relation by the following expression,
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which is fed into the transient drift-diffusion equations
and the Poisson equation [5] to calculate current
density in the NEM p'pp" diode driven by a dc
voltage. The total current density J(¢) is defined by the
sum of the conduction current density and the displace-

ment current density.
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Fig. 1. Calculated carrier drift velocities as a function
of electric field.
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Fig. 2. Self-oscillating frequencies of the dc-biased

NEM diode.

3. The Self-Oscillating Current

We consider the p'pp” NEM diode driven by a dc
bias. The p-base length is set to be [ = 025 nm, the
doping concentration in the p-base is N, = 4.8x10"
cm”, and lattice temperature is 7' = 77 K. To mimic a
realistic situation, a slight doping notch is assumed
near the cathode end of the p'pp’° NEM diode. We
solve the spatial and temporal evolution of the
electrostatic potential and carrier density, which are
self-consistently used to calculate current density. In
the NDV region, a small doping inhomogeneity can
cause the growth of an carrier accumulation layer and
lead to the formation of high-field domain and current
oscillation [9-11]. For the p'pp’ NEM structure
considered here, the dynamic dc voltage band is Vg
from 0.15 V to 0.415 V, in which dynamic electric-
field domain is formed in the p-base and the self-
oscillating current shows up with a frequency f;. When
the dc voltage is beyond the dynamic dc voltage band,
only the static electric-field domain is formed, i.e., the
current density approaches a constant after the initial
transient. In Fig. 2 we show the bias-dependent self-
oscillating frequencies f, which decrease from 2.6 to
0.6 THz with increasing dc voltages from Vg =0.15 to
0.415 V. Specially, when Vi = 0.18 V the self-
oscillating frequency f; = 1.413 THz.
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4. Conclusions

In conclusion, we have theoretically investigated
current self-oscillation of dc-biased NEM p'pp” diodes.
The self-oscillating currents are the results of the
formation and traveling of electric-field domains in the
p-base having a NEM. The self-oscillating frequency
lies in the THz range for the NEM p'pp’ diodes
having submicrometer p-base lengths. It is suggested
that the NEM p'pp” diode may be used as an electrically
tunable THz-frequency source. Also, the present discussions
on nonlinear dynamics of NEM semiconductors would
be very useful for studying quantum-well-based opto-
electronic devices [12-15].
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