Analysis of Static and Dynamic Frictional Contact of Deformable Bodies Including Large Rotations of the Contact Surfaces

  • Lee, Kisu (Department of Mechanical Engineerin, Chonbuk National University)
  • Published : 2002.10.01

Abstract

The numerical techniques are presented to solve the static and dynamic contact problems of deformable bodies having large rotations of the contact surfaces. The contact conditions on the possible contact surfaces are enforced by using the contact error vector, and an iterative scheme similar to augmented Lagrange multiplier method is employed to reduce the contact error vector monotonically. For dynamic contact problems using implicit time integration, a contact error vector is also defined by combining the displacement, velocity, and acceleration on the contact surface. The suggested iterative technique is implemented to ABAQUS by using the UEL subroutine UEL. In this work, after the computing procedures to solve the frictional contact problems are explained, the numerical examples are presented to compare the present solutions with those obtained by ABAQUS.

Keywords

References

  1. ABAQUS Manual, Hibbit, Karlsson & Sorensen, Inc., Version 6.2, 2001
  2. Bathe, K. J. and Chaudhary, A. B., 1986, 'A Solution Method for Static and Dynamic Analysis of Three-Dimensional Contact Problems with Friction,' Comput. Struct. Vol. 24, pp. 855-873 https://doi.org/10.1016/0045-7949(86)90294-4
  3. Crisfield, M. A., 1997, Non-linear Finite Element Analysis of Solids and Structures, Vol. 2, John Wiley and Sons, Chichester
  4. El-Abbasi, N., Meguid, S. A. and Czekanski, A., 2001, 'On the Modeling of Smooth Contact Surfaces Using Cubic Splines,' Int. J. Numer. Method Engng., Vol. 50, pp. 953-967 https://doi.org/10.1002/1097-0207(20010210)50:4<953::AID-NME64>3.0.CO;2-P
  5. Ghosh, S., 1992, 'Arbitrary Lagrangian-Eulerian Finite Element Analysis of Large Deformation in Contacting Bodies,' Int. J. Numer. Method Engng., Vol. 33, pp. 1891-1925 https://doi.org/10.1002/nme.1620330909
  6. Heegaard, J. H. and Curnier, A., 1993, 'An Augmented Lagrangian Method for Discrete Large-Slip Contact Problems.,' Int. J. Numer. Method Engng., Vol. 36, pp. 569-593 https://doi.org/10.1002/nme.1620360403
  7. Hughes, T. J. R., Taylor, R. L., Sackman, J. L., Curnier, A., and Kanoknukulchai, W., 1976, 'A Finite Element Method for a Class of Contact-Impact Problem,' Comput. Method Appl. Mech. Engng., Vol. 8, pp. 249-276 https://doi.org/10.1016/0045-7825(76)90018-9
  8. Laursen, T. A. and Simo, J. C, 1993, 'A Con-tinuum-Based Finite Element Formulation for the Implicit Solution of Multibody Large Deformation Frictional Contact Problems,' Int. J. Numer. Method Engng., Vol. 36, pp. 3451-3485 https://doi.org/10.1002/nme.1620362005
  9. Lee, K., 1989, 'An Efficient Solution Method for Frictional Contact Problems,' Comput. Struct., Vol. 32, pp. 1-11 https://doi.org/10.1016/0045-7949(89)90063-1
  10. Lee, K., 1994, 'A Numerical Solution for Dynamic Contact Problems Satisfying the Velocity and Acceleration Compatibilities on the Contact Surface,' Computational Mechanics, Vol. 15, pp. 189-200 https://doi.org/10.1007/BF00375029
  11. Lee, K., 1997, 'A Numerical Method for Dynamic Analysis of Vehicles Moving on Flexible Structures Having Gaps,' Int. J. Numer. Method Engng., Vol. 40, pp. 511-531 https://doi.org/10.1002/(SICI)1097-0207(19970215)40:3<511::AID-NME77>3.0.CO;2-6
  12. Lee, K., 2002, 'Numerical Analysis of Dynamic Contact with Combined Constraint of Displacement, Velocity and Acceleration on the Contact Surface,' Proc. Instn. Mech. Engrs, Part C, Journal of Mechanical Engineering Science, Vol. 216, pp. 377-382 https://doi.org/10.1243/0954406021524963
  13. Petzold, L., 1982, 'Differential Algebraic Equations Are Not ODEs,' SIAM. J. Sci. Stat. Corn-put., Vol. 3, pp. 367-384 https://doi.org/10.1137/0903023
  14. Taylor, R. L. and Papadopoulos, P., 1993, 'On a Finite Element Method for Dynamic Contact/ Impact problems,' Int. J. Numer. Method Engng., Vol. 36, pp. 2123-2140 https://doi.org/10.1002/nme.1620361211
  15. Timoshenko, S. P. and Goodier, J. N., 1970, Theory of Elasticity, McGraw-Hill, New York
  16. Vu-Quoc, L. and Olsson, M., 1989, 'A Com-putational Procedure for Iinteraction of High-Speed Vehicles on Flexible Structures Without Assuming Known Vehicle Nominal Motion,' Comput. Meth. Appl. Mech. Engng., Vol. 76, pp. 207-244 https://doi.org/10.1016/0045-7825(89)90058-3
  17. Wriggers, P., Krstulovic-Opara, L. and Korelc, J., 2001, 'Smooth $C^1$-Interpolations for Two-Dimensional Frictional Contact Problems,' Int. J. Numer. Method Engng., Vol. 51, pp. 1469-1495 https://doi.org/10.1002/nme.227