DOI QR코드

DOI QR Code

The Properties of a Nonlinear Direct Spectrum Method for Estimating the Seismic Performance

내진성능평가를 위한 비선형 직접스펙트럼법의 특성

  • Published : 2002.08.01

Abstract

It has been recognized that the damage control must become a more explicit design consideration. In an effort to develop design methods based on performance it is clear that the evaluation of the nonlinear response is required. The methods available to the design engineer today are nonlinear time history analyses, monotonic static nonlinear analyses, or equivalent static analyses with simulated nonlinear influences. Some building codes propose the capacity spectrum method based on the nonlinear static analysis(pushover analysis) to determine the earthquake-induced demand given by the structure pushover curve. These procedures are conceptually simple but iterative and time consuming with some errors. This paper presents a nonlinear direct spectrum method(NDSM) to evaluate seismic performance of structures, without iterative computations, given by the structural initial elastic period and yield strength from the pushover analysis, especially for MDF(multi degree of freedom) systems. The purpose of this paper is to investigate the accuracy and confidence of this method from a point of view of various earthquakes and unloading stiffness degradation parameters. The conclusions of this study are as follows; 1) NDSM is considered as practical method because the peak deformations of nonlinear system of MDF by NDSM are almost equal to the results of nonlinear time history analysis(NTHA) for various ground motions. 2) When the results of NDSM are compared with those of NTHA. mean of errors is the smallest in case of post-yielding stiffness factor 0.1, static force by MAD(modal adaptive distribution) and unloading stiffness degradation factor 0.2~0.3.

성능에 기초한 설계법에서는 비선형 응답산정이 필수적이며, 이를 위한 방법으로는 비선형시각이력해석법, 비선형 정적해석법, 비선형 효과를 고려한 등가선형해석법 등이 있다. 일부 규준에서는 pushover곡선으로부터 작성한 성능스펙트럼과 선형 응답스펙트럼으로부터 작성한 요구스펙트럼으로 이루어진 능력스펙트럼법을 제안하고 있다. 이 방법은 개념적으로는 간단하나 반복과정이 요구되며, 부정확한 결과를 산출하는 경우가 많다. 이에 따라 시행착오적인 등가선형 스펙트럼대신 비선형스펙트럼을 사용하는 방법들에 대한 연구들이 진행되고 있다. 비선형 요구스펙트럼은 표준적 선형 설계스펙트럼으로부터 결정될 수 있으며, 이 방법은 등가선형의 경우보다는 계산과정이 대폭 줄어들기는 하나 아직도 다소의 연산과정이 요구된다. 따라서 본 연구에서는 다자유도계의 구조물에 대한 pushover곡선으로부터 구조물의 진동주기와 항복강도를 구한 다음, 일련의 계산과정을 거치지 않고도, 직접적으로 비선형 최대응답을 구할 수 있는 비선형 직접스펙트럼법(NDSM)을 제시하극 집중질량계의 MDF(다자유도계) 모델에 대해 다양한 지진기록과 제하강성저하지수를 변수로 하여 NDSM의 적용성과 신뢰성을 평가하고자 한다. 본 연구의 결론은 다음과 같다. 1) 다자유도계 구조물에 대한 비선형 직접스펙트럼법에 의한 최대변위 응답은 비선형 시각이력해석법에 의한 응답과 거의 일치하므로 실용적인 방법으로 사료된다. 2) 비선형 직접스펙트럼법과 비선형 시각이력해석에 의해 산정된 죄상층 변위 결과를 비교하면, 항복후강성계수가 0.1, MAD(modal adaptive distribution)에 의한 수평정적하중분폰 그리고 제하강성저하지수가 0.2~O.3일 때 평균오차가 가장 줄어드는 것으로 나타났다.

Keywords

References

  1. Chopra, A. K., “Capacity-demand-diagram methods for estimating seismic deformation of inelastic structures : SDF systems,” Report No. PEER-1999/02, Pacific Earthquake Engineering Research Center, University of Berkeley, Berkeley, 1999, p. 67.
  2. Freeman, S. A., “Development and use of capacity spectrum method,” Proceedings of 6th U.S. National Conference on Earthquake Engineering, Seattle, CD-ROM, Oakland, Calif. : EERI, 1998.
  3. Paret, T. F., Sasaki, K. K., Eilbekc, D. H., and Freeman, S. A., “Approximate inelastic procedures to identify failure mechanisms from higher mode effects,” 11th World Conference on Earthquake Engineering, Acapulco, Mexico, 1996, Paper No. 966.
  4. Bommer, J. J. and Elnashai, A. S., “Displacement spectra for seismic design,” J. Earthquake Engng., Vol. 3, 1999, pp. 1-32. https://doi.org/10.1142/S1363246999000028
  5. Applied Technology Council, “Seismic evaluation and retrofit of concrete buildings,” Report ATC-40, 1996. 11, p. 316.
  6. FEMA-273, “NEHRP guidelines for the seismic rehabilitation of buildings,” Report No. FEMA-273, Federal Emergency Management Agency, Washington D.C., 1997. 5, p. 439.
  7. FEMA-356, “Prestandard and commentary for the seismic rehabilitation of buildings,” Report No. FEMA-356, Federal Emergency Management Agency, Washington D.C., 2000. 11, p. 490.
  8. Fajfar, P., “Capacity spectrum method based on inelastic demand spectra,” Earthquake engineering and Structural Dynamics, Vol. 28, 1999, pp. 979-993. https://doi.org/10.1002/(SICI)1096-9845(199909)28:9<979::AID-EQE850>3.0.CO;2-1
  9. Reinhorn, A. M., “Inelastic analysis techniques in seismic evaluations,” Seismic design methodologies for the next generation of codes, Eds; P. Fajfar and H. Krawinkler, Rotterdam, Balkema, 1997, pp. 277-287.
  10. Vidic, T., Fajfar, P., and Fischinger, M., “Consistent inelastic design spectra : strength and displacement,” Earthquake Engineering and Structural Dynamics, Vol. 23, pp. 502-521, 1994.
  11. Mehmet Inel, Bretz, E. M., Black, E. F., Aschheim, M. A., and Abrams, D. P., “USEE 2001 : Utility Software for earthquake engineering report and user's manual,” Civil and Environmental Engineering, University of Illinois at Urbana-Campaign, Urbana, Illinois, 2001. 10, p. 88.
  12. Li, K. N., “CANNY 99, 3-dimensional nonlinear static/dynamic structural analysis computer program- users manual,” CANNY Structural Analysis, CANADA, 2000, p. 215.
  13. Valles, R., Reinhorn, A., Kunnath, S., La C., and Madan, A., “IDARC 2D Version 4.0 : A program for the inelastic damage analysis of buildings,” NCEER-96-0010, National Center for Earthquake Engineering Research, Buffalo, NY, 1996, p. 237.
  14. Chopra, A. K., Dynamics of Structures: Theory and Applications to Earthquake Engineering, Prentice Hall, New Jersey, 2001, p. 844.
  15. 김용주, 강병두, 전대한, 김재웅, “비선형구조물의 지진 응답평가를 위한 직접스펙트럼법”, 2001년도 추계학술 발표논문집, 대한건축학회, 제21권, 제2호, 2001. 10, pp. 119-122.