DOI QR코드

DOI QR Code

Hybrid Control of a Benchmark Cable-Stayed Bridge Considering Nonlinearity of a Lead Rubber Bearing

납고무받침의 비선형성을 고려한 벤치마크 사장교의 복합제어


Abstract

This paper presents a hybrid control strategy for seismic protection of a benchmark cable-stayed bridge, which is provided as a testbed structure for the development of strategies for the control of cable-stayed bridges. This benchmark problem considers the cable-stayed bridge that is scheduled for completion in Cape Girardeau, Missouri, USA in 2003. Seismic considerations were strongly considered in the design of this bridge due to the location of the bridge in the New Madrid seismic zone and its critical role as a principal crossing of the Mississippi river. Based on detailed drawings of this cable-stayed bridge, a three-dimensional linearlized evaluation model has been developed to represent the complex behavior of the bridge. A set of eighteen evaluation criteria has been developed to evaluate the capabilities of each control strategy. In this study, a hybrid control system is composed of a passive control system to reduce the earthquake-induced forces in the structure and an active control system to further reduce the bridge responses, especially deck displacements. Conventional base isolation devices such as lead rubber bearings are used for the passive control design and Bouc-Wen model is used to simulate the nonlinear behavior of these devices For the active control design, ideal hydraulic actuators are used and on $H_2$/LQG control algorithm is adopted. Numerical simulation results show that the performance of the proposed hybrid control strategy is quite effective compared to that of the passive control strategy and slightly better than that of the active control strategy. The hybrid control method is also more reliable than the fully active control method due to the passive control part. Therefore, the proposed hybrid control strategy can effectively be used to seismically excited cable-stayed bridges.

본 논문에서는 지진하중을 받는 사장교의 진동제어 기법 개발을 위해 제공된 벤치마크 사장교에 복합제어 기법을 적용하였다. 이 벤치마크 문제는 2003년 완공 예정으로 미국 Missouri 주에 건설중인 Cape Girardeau 교를 대상 구조물로 고려하였다. Cape Girardeau 교는 New Madrid 지진구역에 위치하고 Mississippi 강을 횡단하는 주요 교량이라는 점 때문에 설계 단계에서부터 내진 문제를 중요하게 고려하였다. 벤치마크 문제에는 사장교의 상세한 설계도면에 기초해 교량의 복잡한 거동을 나타낼 수 있는 3자원 선형모델과 각 제어기법의 성능을 평가하기 위한 18개의 평가기준이 제시되어 있다. 본 연구에서 적용한 복합제어 기법은 지진하중으로 인해 구조물에 발생되는 하중을 줄이기 위한 수동제어 기법과 상판변위와 같은 구조물의 응답을 추가적으로 제어하기 위한 능동제어 기법이 결합된 제어 방법이다. 수동제어 장지로는 납고무받침을 사용하였고 Bouc-Wen 모델을 사용하여 비선형 거동을 고려 할 수 있도륵 모델링 하였다. 능동제어 장치로는 이상적인 hydraulic actuators 가 사용되었으며 제어 알고리듬은 $H_2$/LQG 를 적용하였다. 수치해석 결과 제안방법의 성능은 수동제어 방법에 비해 매우 효과적이며, 능동제어 방법에 비해서는 약간 좋은 제어성능을 나타내었다. 복합제어 방법은 수동제어 부분 때문에 능동제어 방법에 비해 보다 신뢰할 수 있는 제어 방법이다. 따라서 제안된 제어방법은 지진하중을 받는 사장교의 제어를 위해 효과적으로 사용될 수 있다.

Keywords

References

  1. Ali, H. M. and Abdel-Ghaffar, A. M., “Seismic passive control of cable-stayed bridges,” Shock and Vibration, Vol. 2, No. 4, 1995, pp. 259-272. https://doi.org/10.1155/1995/918721
  2. Takahashi, “Earthquake resistance design of the Meiko Nishi Bridge,” Proceedings of the First U.S-Japan Bridge Engineering Workshop, Tsukuba, Japan, 1984.
  3. PWRI(Public Works Research Institute), “Seismic design procedure of cable-stayed bridge: Part I, dynamic characteristics of cable-stayed bridges based on field vibration test results,” Technical Report, Tsukuba, Japan (in Japanese), 1986.
  4. Sakai, T., Nishikawa, K., and Kawashima, K, “New design considerations for reducing seismic lateral force of highway bridges in Japan,” Proceedings of the Eleventh IRF World Meeting, Seoul, Korea, 1989, pp. 1-4.
  5. Kitazawa, M., Noguchi, J., Nishimori, K., and Izeki, J., “Earthquake resistant design of a long period structure and development of girder displacement stopper : Higashi Kobe Bridge,” Proceedings of the Initial Symposium oa Kyushu Univeresity, Fukuoka, Japan, 1991, pp. 123-141.
  6. Iemura H., Adachi Y., and Pradono M. H., “Seismic retrofit of a cable-stayed bridge with dynamic response control devices,” The 14th KKNN Symposium on Civil Engineering, 2001, pp. 95-100.
  7. Dyke, S. J., Turan, G., Caicedo, J. M., Bergman, L. A., and Hague, S., “Benchmark control problem for seismic response of cable-stayed bridges,” 2000, http://wussel.cive.wustl.edu/quake/
  8. Nishitani, A. and Inoue, Y., “Overview of the application of active/semiactive control to building structures in Japan,” Earthquake Engineering and Structural Dynamics, Vol. 30, 2001, pp. 1565-1574. https://doi.org/10.1002/eqe.81
  9. Wen, Y. K., “Method for random vibration for inelastic structures,” Journal of applied mechanics division, Vol. 42, No. 2, 1989, pp. 39-52.
  10. Spencer, Jr., B. F., Suhardjo, J., and Sain, M. K., “Frequency domain optimal control strategies for aseismic protection,” Journal of Engineering Mechanics, ASCE, Vol. 120, No. 1, 1994, pp. 135-159. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:1(135)
  11. Zhou, K., Doyle, J. C., and Glover, K., Robust and Optimal Control, Prentice-Hall, New Jersey, 1996.
  12. Yang, J. N., Wu, J. C., and Agrawal, A. K., “Sliding mode control for nonlinear and hysteretic structures,” Journal of Engineering Mechanics, ASCE, Vol. 121, No. 12, 1995, pp. 1330-1339. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:12(1330)
  13. Irschik, H., Schlacher, K., and Kugi, A., “Control of earthquake excited nonlinear structure using Lyapunov's theory,” Computers and Structures, Vol. 63, 1998, pp. 83-90.
  14. Bani-Hani, K., and Ghaboussi, J., “Nonlinear structural control using neural networks,” Journal of Engineering Mechanics, ASCE, Vol. 124, No. 3, 1998, pp. 319-327. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:3(319)
  15. Kim, D. H. and Lee, I. W., “Neuro-control of seismically excited steel structure through sensitivity evaluation scheme,” Earthquake Engineering and Structural Dynamics, Vol. 30, No. 9, 2001, pp. 1361-1378. https://doi.org/10.1002/eqe.67
  16. Laub, A. J., Heakth, M. T., Paige, C. C., and Ward, R. C., “Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms,” IEEE Transaction on Automatic Control, AC-32, 1987, pp. 17-32.
  17. He, W. L., Agrawal, A. K., and Mahmoud, K., “Control of seismically excited cable-stayed bridge using resetting semiactive stiffness dampers,” Journal of Bridge Engineering, Vol. 6, No. 6, 2001, pp. 376-384. https://doi.org/10.1061/(ASCE)1084-0702(2001)6:6(376)
  18. Turan, G., “Active Control of a Cable-Stayed Bridge Against Earthquake Excitations,” Ph.D. Dissertation, Department of Civil Engineering, University of Illinois at Urbana-Champaign, 2001.
  19. $MATLAB^{\circledR}$, The Math Works, Inc. Natick, Massachusetts, 1997.