DOI QR코드

DOI QR Code

Predicting the Nonlinear Behavior of Reinforced Concrete Membrane Elements Subjected to Reversed Cyclic Loading

반복하중을 받는 철근콘크리트 막요소의 비선형거동에 대한 예측

  • Published : 2002.08.01

Abstract

The behaviors of the reinforced concrete membrane elements are expected by Navier's three principles of the mechanics of materials. The adopted cyclic stress-strain curves of concrete consist of seven different unloading and loading stages in the compressive zone and six other stages in the tensile zone. The curves took into account the softening of concrete that was influenced by the tensile strain in the perpendicular direction of cracks. The stress-strain relationships for steel bar embedded in concrete subjected to reversed cyclic forces considered the tension stiffening effect and Baushinger effect. The predicted results of the analysis based on Navier's principles were in good agreement with the observed shear stress-strain relationships as well as transverse and longitudinal strains.

지진하중을 받는 철근콘크리트 패널의 이력거동을 힘의 평형조건, 변형의 적합조건 및 재료의 구성법칙을 이용한 재료메카니즘을 이용하여 예측하였다. 해석에서는 7단계의 압축응력-변형률곡선과 6단계의 인장응력-변형률곡선으로 구성된 콘크리트의 응력-변형률 모델을 이용하였다. 콘크리트의 응력-변형률 모델에는 균열이 발생한 콘크리트의 연화효과에 의한 압축강도 저감효과가 고려되었다. 해석에 적용된 반복하중을 받는 철근의 평균 응력-변형률관계에는 바우싱거효과 및 철근과 콘크리트의 부착작용을 고려한 인장경화효과가 고려되었다. 해석에 의하여 예측된 패널의 이력거동은 철근비가 다른 3개의 철근콘크리트 패널시험에 의하여 검증되었다. 해석법은 패널의 이력곡선을 추적하여 철근비가 점차 증가하는 시험체의 최대전단응력을 매우 정확히 예측하였다. 또한, 해석에 의하여 예측된 수직 및 수평변형률은 실험에서 관찰된 변형률과 잘 일치하였다.

Keywords

References

  1. Vecchio, F. J. and Collins, M. P., “The Modified Compression Field Theory for Reinforced Concrete Elements Subjected to Shear,” ACI Structural Journal, Vol. 83, No. 2, 1986. 3-4, pp. 219-231.
  2. Hsu, T. T. C., “Softened truss model theory for shear and torsion,” ACI Structural Journal, Vol. 85, No. 6, 1988. 11-12, pp. 624-635.
  3. Vecchio, F. J. and Collins, M. P., “Predicting the response of reinforced concrete beams subjected to shear using modified compression field theory,” ACI Structural Journal, Vol. 85, No. 3, 1988. 5-6, pp. 258-268.
  4. Ohmori, N., Takahashi, T., Tsubota, H., Inoue, N., Kurihara, K., and Watanabe, S., “Experimental studies on nonlinear behaviors of reinforced concrete panels subjected to cyclic in-plane shear,” Journal of Structural and Construction Engineering, Architectural institute of Japan, No. 403, 1989, pp. 105-118.
  5. Kurihara, K., Ohmori, N., Takahashi, T., Tsubota, H., Inoue, N., and Watanabe, S., “Analytical hysteresis model for reinforced concrete panels subjected to cyclic in-plane shear,” Journal of Structural and Construction Engineering, Architectural institute of Japan, No. 410, 1990, pp. 93-105.
  6. Stevens, N. J., Uzumeri, S. M., and Collins, M. P., “Reinforced concrete subjected to reversed cyclic shear - Experiments and constitutive model,” American Concrete Institute Structural Journal, Vol. 88, No. 2, 1991, pp. 135-146.
  7. Mansour, M., Lee, J. Y., and Hsu, T. T. C., “Cyclic stress-strain curves of concrete and steel bars in membrane elements,” Journal of Structural Engineering, ASCE, Vol. 127, No. 12, 2001. 12, pp. 1402-1411. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:12(1402)
  8. Robinson, J. R. and Demorieux, J. M., “Essais de traction-compression sur models d'ame de poutre en Beton Arme,” IRABA Report, IRABA, 1968. 6, pp. 44.
  9. Belarbi, A. and Hsu, T. T. C., “Constitutive laws of Journal, Vol. 92, No. 5, 1995, pp. 562-573.
  10. Belarbi, A. and Hsu, T. T. C., “Constitutive laws of concrete in tension and reinforcing bars stiffened by concrete,” ACI Structural Journal, Vol. 91, No. 4, 1994. 7-8, pp. 465-474.