Effect of $textsc{k}$-Casein, GMP and Sialic Acid on the Infection of MA-104 Cells by Korean Native Cattle Rotavirus and JBR

$textsc{k}$-Casein, GMP, Sialic Acid가 한우송아지 Rotavirus와 제주도 Bovine Rotavirus(JBR)의 MA-104 세포감염에 미치는 영향

  • Published : 2002.09.01

Abstract

This study was conducted to investigate inhibitory effects of K-casein, GMP and sialic acid addition on the infection of MA-104 cells by 597(Korean native cattle rotavirus) and JBR(Jeju island bovine rotavirus). MA-104 cells on incomplete Ml99 were infected with domestically separated 597 and ma activated by incubating at 37$\^{C}$ for 6 days, and analyzed for the titer of rotavirus. K-casein, GMP and sialic acid added MA-104 culture infected by activated S97 and nan were incubated for Is hours and stained by the AEC stainning method. The number of infected cells were counted on microscope. The titer of S97 and JBR was 2.5$\times$107 and 2.0$\times$106 PFU/ml, respectively. The inhibition level against cell infection by 597 was 97.4% far 2000UH of K-casein and 97.44% for 2000UM of GMP. The inhibition level against cell infection by JBR was 99.52% for 2000$\mu$M of $\kappa$-casein and 99.78% for 2000$\mu$M of GMP. The inhibition level against cell infection by 597 and JBR was 3.85 and 3.63% for 2000$\mu$M of sialic acid, respectively. The high inhibitory effects (over 97%) of K-casein and CMP against infection of U-1(14 cells with 597 and mR indicated great potentials for the use of K-casein and GMP in the treatment of calf or infant caused by rotavirus.

로타바이러스는 유아와 어린 포유동물에 있어서 위장염을 일으키는 원인체로서 다양한 혈청형에 의해 발병되기 때문에 효과적인 백신 개발이 되지 않고 있다. 본 연구는 국내 분리 한우송아지 로타바이러스 S97과 JBR(Jeju island bovine rotavirus)에 $textsc{k}$-casein, GMf, sialic acid를 첨가하여 MA-104세포에 감염시켰을 때 그 억제 효과를 규명하기 위해 시행하였다. 한우송아지 로타바이러스 597과 JBR을 무혈청 Ml99배지의 MA-104세포에 감염시켜 37$^{\circ}C$에서 6일간 회전 배양하여 활성화시킨 다음, 로타바이러스 역가를 분석하였고, MA-104 세포에 활성화된 BRV를 감염시키고, $textsc{k}$-casein, GMP sialic acid를 각각 농도에 따라 첨가하여 15시간 배양한 다음 AEC 염색법으로 염색시켜 현미경 상에서 감염된 세포수를 계산하였다. 한우송아지 로타바이러스 S97과 GMR의 역가는 각각 2.5$\times$107과 2.0$\times$106 PFU/ml이었다. $textsc{k}$-casein, GMP의 농도 20001M에서 S97의 세포감염율은 97.4%와 97.44%로 나타났고, $textsc{k}$-casein, GWP의 농도 2000$\mu$M에서 JBR의 세포감염 억제율은 99.52%와 99.78%로 나타났다. Sialic acid의 농도 2000$\mu$M에서의 S97과 JBR의 세포감염 억제율은 3.85%와 3.63%로 나타났다. $textsc{k}$-casein, CU는 로타바이러스 S97과 JBR에 대해 농도 2000UM에서 97%이상의 억제효과를 나타냈으며, sialic acid는 억제효과가 거의 없었다. K-casein, GMP는 송아지뿐만 아니라 유아의 로타바이러스에 의한 설사를 억제할 수 있을 것으로 기대된다.

Keywords

References

  1. Alais, C. and JolIes, P. (1961) Etude comparee des caseinogly-copeptide formes par action de la presure sur les caseines de vache et de chever. Etude de la partie non-peptidique. Biochim. Biophys. Acta., 51, 315 https://doi.org/10.1016/0006-3002(61)90172-X
  2. Azuma, N., Yamaguchi, K. and Mitsuoka, T. (1984) Bifidus growth-promoting activity of a glycomacropeptide derived from human K-casein. Agric. Biol. Chem., 48, 2159
  3. Baker, J. C. (1987) Bovine viral diarrhea virus: A review. J. Am. Vet. Med. Assoc., 190, 1449-1458
  4. Bass, D. M., Baylar, M. R., Chen, C., Meng, L. and Greenberg, H. B. (1992) Liposome-mediated transfection of intact viral particles reveals that plasma membrance determines permissivity of tissue culture cells to rotavims. J. din. Invest., 90, 2313-2320
  5. Cha, K. J., Yu, D. Y., Lee, J. K. and Yu, J. H. (1999) Effect of bovine lactoferrin on MA-104 cell infected with human rotavirus. J. Kor. Soc. Virol., 29, 87-97
  6. Chiarini, A., Arista, S., Giammanco, A. and Sinatra, A. (1983) Rotavirus persistence in cell culture: select of resistant cells in the presence of fetal calf serum. J. Gen. Virot., 64, 1101-1110 https://doi.org/10.1099/0022-1317-64-5-1101
  7. Conner, M. E., Madson, D. O. and Estes, M. E. (1994) Rotavirus vaccines and vaccination potentional. Curr. Top Microbiol.Immunol., 105, 253
  8. De Mol, P., Zissis, G., Butzler, J. P., Mutwewingabo, A. and Andre, F. E. (1986) failure of live, attenuated oral rotavirus vaccine. Lancet, 2, 108-113
  9. Ebina, T., Sato, A., Umezu, K.., Ishida, N., Ohyama, S., Oizumi, A., Ailawa, K., Katagiri, S., Katsushima, M., Iinai, A., K-itaoka, S., Suzuld, H. and Konno, T. (1985) Prevention of rotavirus infection by oral administration of cow colostrum containing antihuman rotavirus antibody. Medical Microbiology and Immunology, 174, 177-185 https://doi.org/10.1007/BF02123694
  10. Ebina, T., Tsukada, K., Umezu, K., Nose, M., Tsuda, K., Hatta, H., Kim, M. and Yamamoto, T. (1990) Gastroenteritis in suckling mice caused by human rotavirus can be prevented with egg yolk immunoglobulin (IgY) and treated with a protein-bound polysac-chat-ide preparation. Microbiology and Immunology, 34, 617-629 https://doi.org/10.1111/j.1348-0421.1990.tb01037.x
  11. Ebina, T. and Tsukada, K. (1991) Protease inhibitors prevent the development of human rotavirus induced diarrhea in suckling mice. Microbiology and Immunology, 35, 583-588 https://doi.org/10.1111/j.1348-0421.1991.tb01589.x
  12. Ebina, T., Ohta, M., Kanamaru, Y., Yamamoto-Osumi, Y. and Baba, K. (1992) Passive immunization of suckling mice and infants with bovine colostrum containing antibodies to human rotavirus. J. Med. Virol., 38, 117-123 https://doi.org/10.1002/jmv.1890380209
  13. Estes, M. K. and Cohen, J. (1989) Rotavirus gene structure and function. American Soci. Microbiol., 53, 410-449
  14. Gentsch, J. R., Glass, R. I. and Woods, P. (1992) Identification of group A rotavirus gene 4 types by polymerase chain reaction. J. Clin. Microbiol, 30, 1365-1373
  15. Jolles, P. and Henschen, A. (1982) Comparison between the clotting of blood and milk. TIBS, pp. 29-32
  16. Kaljot, K. T., Shaw, R, D., Rubin, D. H. and Greenberg, H. B. (1988) Infectious rotavirus enters cells direct cell membrane penetration, not by endocytosis. J. Virol., 62, 1136-1144
  17. Kapikian, A. Z. and Chanock. R. M. (1990) Rotaviruses. Virology 2, 2nd: In B. N. Fields and D. M. Knipe(ed), Raven press, New York. pp. 1353-1404
  18. Kawasaki, Y., Isoda, H., Tanimoto, M., Dosako, S., Idota- T. and Achiko, K. (1992) Inhibition by lactoferrin and K-casein glyco-macropeptide of binding of cholera toxin to its receptor. Biosci. Biotech. Biochem., 56, 195-198 https://doi.org/10.1271/bbb.56.195
  19. Kawasaki, Y., Isoda, H., Shinomoto, H., Tanimoto, M., Dosako, S., Idota, T. and Nakajima, I. (1993) Inhibition by K-casein gly-comacropeptide and lactoferrin of influenza virus hemagglutina-tion. Biosci. Biotech. Biochem., 57, 1214-1215 https://doi.org/10.1271/bbb.57.1214
  20. Kobayashi, N., Taniguchi, K. and Urasawa, T. (1993) Reactivity of antihuman rotavirus VP4 neutralizing monoclonal antibodies with animal rotaviruses and with unusual human rotaviruses having different P and G serotypes. Res. Virol., 144, 201-207 https://doi.org/10.1016/S0923-2516(06)80030-0
  21. Koketsu, M., Nitoda, T., Juneja, L. R., Kim, M., Kashimura, M. and Yamamoto, T. (1995) Sialyloligosaccharides from egg-yolk as an inhibitor of rotaviral infection. J. Agric. Food Chem., 43, 858-861 https://doi.org/10.1021/jf00052a002
  22. McKenzie, H. A. (1971) Milk proteins II: Chemistry andmolecular biology. Academic Press, New York & London
  23. Neerser, J. R. (1987) Caseinoglycopeptides as dental plaque and dental caries inhibiting agents. Eur. Pat. Appl., EP. 283, 675
  24. Noel, J., Mansoor, A., Thaker, U., Hermann, J., Perronhenry, D. and Cubitt, W. D. (1994) Identification of adenoviruses in faeces from patients with diarrhea at the hospitals for sick children, London, 1989-1992. J. Med. Virol., 43, 84-90 https://doi.org/10.1002/jmv.1890430116
  25. Ruggeri, F. M. and Greenberg, H. B. (1991) Antibodies to the trypsin cleavage peptide VP8 neutralize rotavirus by inhibiting binding of virions to target cells in culture. J. Virol., 65, 2211-2219
  26. Shaw, R. D., Groene, W. S., Macknow, E. R., Merchant, A. A. and Cheng, E. H. (1991) VP4-specific intestinal antibody response to rotavims in a marine model of heterotypic infection. J. Virol., 65, 3052-3059
  27. Song, J. O., Cho, H. C., Lee, Y. K.., Lee, J. I., Park, B. S., Kim, Y. H., Cha, K. J. and Yu, J. H. (2000) Effeet of glycyrrhetinic acid on MA-104 cell infected with bovine rotavirus. Korean J. BRM, 10, 115-126
  28. Superti, F., Ammendolia, M. G., Valenti, P. and Seganti, L. (1997) Antirotavial activity of milk proteins: lactoferrin prevents rotavirus infection in the enterocyte-like cell line HT-29. Medical Microbiology and Immunology, 186, 83-91 https://doi.org/10.1007/s004300050049
  29. Yolken, R. H., Peterson, J. A., Vonderfecht, S. R., Fouts, E. T. Midthun, K. and Newburg, D. S. (1992) Human milk mucin inhibits rotavirus replication and prevents experimental gastroen-teritis. J. Clin. Invest., 90, 1984-1991 https://doi.org/10.1172/JCI116078
  30. Yolken, R. H., Willoughby, R., Wee, S. B., Miskuff, R. and Vonderfecht, S. R. (1987) Sialic acid glycoproteins inhibit in vitro and in vivo replication of rotaviruses. J. Clin. Invest., 79, 148-154 https://doi.org/10.1172/JCI112775
  31. Yu, J. H., Cha, K. J., Kim, E. R., Kim, Y. S., Lee, Y. K.., Song, J. O., Cho, H. C., Ju, J. S., Park, B. S., Yu, D. H., Kim, S. M., Ji, B. J., Lee, J. B., Urasawa, S., Taniguchi, K. and Greenberg, H. B. (2000) Isolation, serotyping and nucleotide sequence analysis of bovine rotavirus isolated from Korean native cattle. J. Kor. Soc. Virol., 30, 189-202
  32. Yu, J. H., Lee, Y. K., Ju, J. S., Kim, Y. S., Kim, S. J., Ebina, T., Nakagomi, O., Urasawa, S., Taniguchi, K. and Greenberg, H. B. (1996) Isolation and characterization of Jeju island bovine rotavirus (JBR). J. Kor. Soc. Virol, 26, 181-189