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CYCLOTOMIC UNITS AND DIVISIBILITY OF
THE CLASS NUMBER OF FUNCTION FIELDS

JAEHYUN AHN AND HwWANYUP JUNG

ABsTRACT. Let k = F,(T) be a rational function field. Let £ be a
prime number with (£,g—1) = 1. Let K/k be an elementary abelian
{-extension which is contained in some cyclotomic function field. In
this paper, we study the ¢-divisibility of ideal class number hx of
K by using cyclotomic units.

1. Introduction

Let K be a finite abelian number field. When K is a real extension,
the class number hg of K is difficult to calculate. If the conductor of
K is divisible by many primes ¢, ...,gs, where each g; is congruent to
1 modulo a prime ¢, then hx has a tendency to be divisible by a higher
power of £. There are several ways to show results of this type. Cornell
and Rosen([3], [4]) showed this result using unramified /-extensions and
central extensions of K. There is another way to show similar results
using the group of cyclotomic units and its index in the full unit group
O3 of K. Tt is carried out by Kucera ([9]) for p = 2 and compositum K
of quadratic fields and by Greither, Hachami and Kucera ([5]) for odd
prime p. In function field case, Bae and Jung ([1]) obtained some results
of ¢-rank of ideal class groups of real cyclotomic function fields following
Cornell and Rosen. In this paper, we show similar results following the
idea in [5] and compare our results with those in ([1]). Now we state our
result precisely.

Let A = FF,[T] be the ring of polynomials over a finite field F, with
q elements and k = Fyo(T). Let ¢ = pf with p = char(k) and f >
0. For each M € A, one uses the Carlitz module to construct a field
extension kpz, called the M-th cyclotomic function field and its maximal
real subfield k3. For a finite abelian extension F of k which is contained
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in some cyclotomic function field, we call M the conductor of F if kps
is the smallest cyclotomic function field which contains F'. Also we call
F real if F is contained in k3, Wy Where M is the conductor of F.

Let £ be a prime rational number with (¢,g—1) = 1. For s € Z, s > 0,
we write S = {1,...,s}. Let Q1,...,Qs be distinct monic irreducible
polynomials in A. In addition, if £ # p, we require that each @; satisfies
qdee(@)) = 1 mod ¢. We choose e1,...,e; € Z so that e¢; = 1 (resp.
e; > 2) for £ # p (resp. £ = p) for each i € S. Let K, be any elementary
abelian f-extension of k in k Qc for each i € S and ¢; be the ¢-rank of

G; = Gal(K;/k). Since (¢,g — 1) =1, each Kj is real, i.e., K; C Ic+eZ

It is known ([1, Section 5]) that ; = 1if £ # p and §; < f x deg(Qz)
(e — 1~ [(es — 1)/pl) if £ = p.

Let K be the compositum of all K;, i € S and G = Gal(K/k). Since
G ~ T1;.; Gi, G is an elementary abelian ¢-group of rank § = 3 ;_,; d;.
Let Ok be the integral closure of A in K. Let hgx be the ideal class
number of Og. Our main result is the following theorem.

MAaIN THEOREM. With notations as above, the ideal class number
hi is divisible by ¢lli=1(1+8:)=sé-1
Now we assume that K is the maximal elementary abelian ¢-extension
of k in Kgei. Then d; equals to f x deg(Q;) x (e; — 1 — [(e; — 1)/p])
for £ = p. In [1], Bae and Jung showed that hg is divisible by £5(s=3)/2
(resp. P2i<s ‘s"‘sj"zl"si) for I # p (resp. for £ = p). For £ # p, our MAIN
THEOREM says that hy is divisible by £2°~s*~1 Note that 2° —s2—1 >
s(s — 3)/2 for s > 4. For £ = p, elementary calculations show that
S
[Ta+6) 21+ > 6+ 66+ Z (j)/s)Z@-,
i=1 i i<j =3 i
and so [[;_,(1+ ;) — s6 — 1 is greater than 3, _,8;0; — >, d; for s > 4.
Thus our result gives larger /-factor of hx than the result in [1] for s > 4.
In 1], authors also give results for the case that ¢ divides ¢ — 1. These
cases corresponds to the case p = 2 in the number field case. Thus it

will be interesting to consider the function field analogue of Kucera’s
result ([9]).

2. Cyclotomic units

We keep all the notations of the preceding section. In this section,
we give some basic facts of the cyclotomic function fields and cyclotomic
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units which are needed in the proof of MAIN THEOREM. Let k% be an
algebraic closure of k. Then k% becomes an A-module (called Carlitz
module) under the following action: For v € k% and M € A, define

u™ = M(p + pr)(u),

where the map ¢ is defined as p(u) = u? and ur is defined as ur(u) =
Tu. It is known that the set Aps of roots of u™ = 0 generates an abelian
extension k(Aps) of k, called the M-th cyclotomic function field and we
denote it by kps for simplicity. By a primitive M-th torsion point, we
mean a generator of Ay as an A-module. The following facts are basic
in the cyclotomic function field theory.

PrOPOSITION 2.1 ([8]). (i) Gal(ka/k) = (A/M)*.
(i) k}, is the fixed field of 3 in kpr, and it is the maximal subfield of
kar, where oo = (1/T) splits completely.
(iii) If (M,N) =1, then ks and ky are linearly disjoint over k.
(iv) If M = P, a power of monic irreducible P, then Ny, /x(Am) = P.
Here A\ is a primitive M -torsion point.

Recall that the group D of cyclotomic numbers of K is defined as
the subgroup of K* generated by F; and all elements Ny /x (\4) with
N,A € A where Ky = ky N K. Let C = DN O}, called the group
of cyclotomic units of K (cf. [7, Section 3]). For @ # I C S, we set
Mp = [Lie; @ 61 = Y .18, Kr the compositum of K;,i € I and
zr = Ny, / k; (A1), where )\ is a fixed primitive M;-th torsion point. It
is known that D is generated by F,U{2f : 0 € G,0 # I C S}, and D
(resp. C) has rank £5 + s — 1 (resp. £ —1). The index of C in the full
unit group O} is related to the ideal class number hg.

ProposITION 2.2 ([2], Corollary 3.11).
0% : C] = (a = 1)* 'hx.
As the classical case, we have the following,

LEMMA 2.3. Let N, P,Q € A with P monic irreducible, N = PQ. If
P1tQ, we let 0 = (P,kg/k)™* € Gal(kg/k). Then we have

Niy ko (AN) = {()\ﬁ)(l—a) if P{Q,Q ¢Fy.

Note that A% is also primitive Q-torsion point and so A§ = /\22 for some
TE Gal(kQ/k‘).
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Proof. First we note that

deg(P) if P|Q

q ! ’
kn ko) = deg(P fP{Q
(kn Q) {q eg(P) _ 1 i 1Q.

Let W = W(QA/NA) be a complete set of representatives of QA/NA
consisting of monic polynomials. If P|Q, then

Gal(kn/kg) ~{(1+ X))+ NA € (A/NA)*: X ¢ wi
and so we have

NewsoOw) = J] W5 = I O +2%).
Xew XeW

We claim that Ap = {\% : X € W}. Clearly MK # AY for any distinct
X,Y € Wand (AX)P = 0. Since [W| = |QA/NA[ IA/PAI |Ap|, we
get the claim. Since
- ey =TT wad)
AEAP Xew

we have
v =TT O~ +X%) = Niy o On).
Xew
Now, suppose that P { Q. There exists Xy € QA such that X, = —1
mod P. Without loss of generality, we may assume that Xy € W. Then
P|(Xp + 1); so Xg + 1 is not prime to N. Hence we have

Gal(ky /kq) =~ {(1+ X) + NA € (A/NA)* : X € W, X # Xo}

and
xew v +2A3)

NkN/k‘Q ()‘N)

AN + )\XO
Let 14+ Xy = PB. Since Xo € QA, (P,kg/k)™! = (B, kg/k) = o and so
AN +/\JXVO _ (/\P)B ()\P)(B Jko/k) _ (/\P)a
Therefore, we get NkN/kQ()\N) = ()\ﬁ) . a

Let 01, ..., 045, be the generators of Gal(Ks/Kg_g;). Forie 5,1 <
J < 0;, define Ny j = 14045 + -+ + afj_ ! the norm corresponding to
the group (0:;). For @ # I C S, let T ={(3,5):i € ,1 < j < 4 }. For
JC .7, we define

e nes Nij
xrg =z T
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For any subset J of T, , we say that J satisfies the condition (x) for T if
Hj: (i,7) € J} < §; for each i € I. Note that, if £ # p, then J = 0 is
the only one which satisfies () and so zy s is just zy. For 0 # I C S,

J C f, define

SI,JZ{ H afjj:OSaijSK—Z}.
1€1,1<5<6;,(3,5)¢J
1

f—
Let B = {xg.;fjs‘si”“ 1 <i<spufef;:0#ICSJC
I,J satisfies(*), o € St 7}
PROPOSITION 2.4. B is a Z-basis of D/Fy.

Proof. First we calculate the cardinality of B. We have

1Bl= Yo -y

PAICS JcT,J satisfies (x)

Then,
Z (¢ -1 = Z(y ~ 1)l Z Z (£ — 1)1=1]

J satisfies (%)

_,_Z Z (¢—1)0r-M_...

i€l v T
1iJ<j JcL{ijycd

= > I, DI,

I'cr

where u(I', I) = (—1)1=17'l | the Mébius function on the subsets of S and
g’y =32t~ )%=l = 81, So, by the Mébius inversion formula,

we have
P=g(&)=> > (-1

IcS JcT
J satisfies (*)

Thus, |B| = £® + s — 1. Therefore, the cardinality of B is equal to the
Z-rank of D. It remains to show that B generate D modulo Fy. The
remaining part of the proof is so directly analogous to Greither, Hachami
and Kucera’s proof in the number field case that the reader should refer
to ([5, Proposition 1.2]). O

For £ # p, since J = () is the only subset of I which satisfies (%), we have
£—1
il

B={x?:0#ICS,a€SI}U{:cC{’zI} ti=1,...,8},



770 Jaehyun Ahn and Hwanyup Jung

where S; = {[I,c; 057 :0<a; < €2}

3. Proof of the main theorem

For § # I C S and J C I, we define

€r,J _ : £-2
yr,g =5 with €[,J=H H (L—ay) "
i€l 1<5<6,(6,5) 2]

Let L be the subgroup of k* generated by Q1,...,Qs. For J C f, we
call J satisfy the condition (xx) for I if, foreach i € I, |{j € {1,...,6;}:
(¢,7) € J}| = 6; — 1. Clearly, the condition (**) is a sufficient condition
for the condition (*) and so, if £ # p, only J = ( satisfies the condition
(+*). We define the subgroup U of C generated by {y7;: 0 # I C

S,J c I, J satisfies (xx),0 € G}.

PROPOSITION 3.1. For any w € U and o € G, there are ¥,(c) € L
and fu(0) € D such that ™ = i (0)fu(0)¢ and (o) is uniquely
determined modulo L. '

Proof. Since (£,q—1) =1, K*NL = Lf. From this, the uniqueness of
¥y () modulo L¢ follows. As in [5], it suffices to prove the proposition
foru=yrywith@#£ICS,JC f, J satisfies (x*) and 0 = 0;; with
1€l (i,5) & J.

We use induction on |I|. Suppose that the proposition is true for all u
generated by yp y with I' ¢ T and J' C I’ with J' satisfying (xx). Note
that (1 - O’ij)e_l(l - Uij) = (]. - O'ij)e_l = Ni,j 4 fa for some o € Z[O’ij].
Thus

1-0y; (Nij e [lyer-giy Izjr<s, (it jhgs (1= )2
Y10° = Ty
— (le\j?jﬂ)nz' Hj’(l"ai’j’)e_2we

for some w € D. Note that x?’"’ = xnls’g‘ ” and that Hi<j<s, Niij

1,7-{i}
is the norm corresponding to Gal(K1/Kj_(;)-
If I — {i} # 0, by Lemma 2.3, we have :r?’}’ = (2177 )" where

X
1-{i}J— {3}

7,7 € G with T = (Qi, Kr_(i/k). Note that J — {i} ¢ I — {s} and
satisfy (xx) for I — {i}. From the induction hypothesis, we have that
1—oi; 1-7 )7" ¢

v = -
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can be written in the desired form and so it remains to prove the case
I = {i}. But when I = {3}, we have

N; H1§‘<6i Nij
xI,JJ =z; " = qu?i /k()\sz) =Q; €L

It finishes the proof of the proposition. O

From the proposition 3.1, it is obvious that for each u € U, ¢, : G —
L/L* is a homomorphism. Now we define a map ¥ : U — Hom(G, L/L*)
defined by ¥(u) = ¢,,. Then ¥ is a homomorphism. So we consider u €
ker(¥). From proposition 3.1, we have u!~7 = fu(0)t with f,(o) € D
for all o € G. Since

ul =T = w77 = £ (0) fu(7)" = (ful0) fulr)),

we see that f, : G — D is a l-cocycle for u € ker(¥). Therefore, we
have the following proposition as the classical case ([5, Proposition 2.5]).

PROPOSITION 3.2. For any u € ker(¥), there exists a(u) € K* and

¢(u) € L such that
u = p(u)a(u)’.

Note that ¢(u) is unique modulo L¢, and so ¢ : ker(¥) — L/L* is
a homomorphism. We denote ker(p) by N. From Proposition 3.2, any
element of N is the ¢-th power in K. Since N C U C O%, it becomes
the ¢-th power in 0% and so N C C N (0%)*.

As Greither, Hachami and Kucera ([5, Lemma 2.7-2.8]), we have

LEMMA 3.3. (i) [U : N] divides £°| Im(¥)| and | Im(¥)| divides £°°.
(i) {yrsC¢: 0 # I C S and J C I,J satisfies (xx)} U {y?iifJ Dio=
1,...,sand J = {7}\{(1, 1)}} is free over Z/¢Z in the vector space
C/C".
Now we are ready to prove MAIN THEOREM.
Proof of the main theorem. By Proposition 2.2 and Lemma 3.3 (i), it
suffices to prove that £lli=1(1+%)=t=1 diyvides [O% : C], where | Im(¥)| =

¢t > 0. We denote O% by E for simplicity. We consider the short
exact sequence

0— C/CNE'~E'C/E* - E/E* - E/E'C — 0.
Since E/E* is (Z/{Z)-vector space of dimension [K : k] —1 =€ —1, we

have

(3.1) tko(E/C) = dim(E/E*C) = £’ — 1 — dim(C/C N EY),
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where rk(E/C) denotes {-rank of E/C and dim denotes dimg/ez for
simplicity. We denote the image of N and U in C/C¢ by N and U,
respectively. Since N ¢ C N E¢,

(3.2) dim(C/C N E% < dim((C/C%)/N) = £ — 1 — dim(N).
From (3.1) and (3.2), we get
tky(E/C) > dim N.

But from Lemma 3.3 (i), (ii), we have

S
diml_]zH(l—I-éi)—l—i-s and dimU/N <s+t.

=1
Therefore,
8
rky(E/C) > dim N > [J(1 +6) -t -1,
i=1
which completes the proof of the theorem. O
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