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MARTENS’ DIMENSION THEOREM
FOR CURVES OF EVEN GONALITY

TAaKAO KATO

Dedicated to Professor Hiroki Sato on his sixtieth birthday

ABSTRACT. For a smooth projective irreducible algebraic curve C
of odd gonality, the maximal possible dimension of the variety of
special linear systems WJ(C) is d — 3r by a result of M. Coppens
et al. [4]. This bound also holds if C does not admit an involution.
Furthermore it is known that if dim W (C) > d — 3r — 1 for a curve
C of odd gonality, then C is of very special type of curves by a
recent progress made by G. Martens [11] and Kato-Keem [9]. The
purpose of this paper is to pursue similar results for curves of even
gonality which does not admit an involution.

1. Introduction

Let C be a smooth projective irreducible algebraic curve over the
field of complex numbers C or a compact Riemann surface of genus
g. The Jacobian variety J(C) is a g-dimensional abelian variety which
parameterizes all the line bundles of given degree d on C. We denote by
W3 (C) the locus in J(C) corresponding to those line bundles of degree
d with at least 7 + 1 independent global sections. Then W] (C) is a
subvariety of J(C) and can be equivalently viewed as the subvariety
consisting of all effective divisor classes of degree d which move in a
linear system of projective dimension at least r.

If d < g+ r— 2, then H. Martens [12] showed that the maximal
possible dimension of WJ(C) is d — 2r and the maximum is attained if
and only if C is hyperelliptic.
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If dim W] (C) is near the maximum number, C is of low gonality —
the gonality of C' means the minimal sheet number of a covering over
P!, denoted by gon(C) — or a double covering of a curve (cf. Mumford
[13], Keem [10}, Coppens-Martens-Keem [4]).

In particular, by Coppens, Martens and Keem [4, Theorem 3.2.1], if
dim Wj;(C) > d—3r for d < g—2, then C is a double covering of a curve.
Thus, if C' does not have an involution — an automorphism of order 2 —
or is of odd gonality, their result induces a significant refinement of the
theorem of H. Martens. The precise statement of their theorem is:

THEOREM A ([4, Theorem 3.2.1]). Let C be a smooth curve of genus
g Letd < g-1andr > 2 IfdmWj(C)=d-2r—j for some j
(0 <j<r-—1), then C is either a double covering of a curve of genus j
or an extremal curve of degree 3r — 1 in P", in this case j =r — 1.

Concerning this bound, recently G. Martens [11] and Kato-Keem [9]
gave characterizations of WJ(C)’s for curves C' of odd gonality which
attain the dimension d — 3r or d — 3r — 1:

THEOREM B (G. Martens [11]). Let C be a smooth projective curve
of genus g over the complex number field. Assume that the gonality of
C is odd. Then dimWj(C) < d — 3r for any d < g, and if equality
occurs for some d < g — 2 and r > 0 then C is either trigonal, smooth
plane sextic, birational to a plane curve of degree 7 (in this case only
g = 13 and g = 14 occur) or an extremal space curve of degree 10.

THEOREM C (Kato and Keem [9]). Let C be a smooth irreducible
projective curve of genus g over the complex number field. Assume the
gonality of C' is odd and dim W} (C) = d — 3r — 1 for some d < g — 4
and r > 0. Then C is 5-gonal with 10 < g < 18, g = 20 or 7-gonal of
genus 21; furthermore C is a smooth plane sextic (resp. octic) in case
gon(C) =5, g =10 (resp. gon(C) =7, g =21).

In the present paper, we shall pursue similar results for curves of even
gonality. In case of even gonality, Theorem A suggests us it is natural
to assume that the curve does not have an involution.

In this paper, we use standard notation for divisors, linear series,
invertible sheaves and line bundles on C as follows: As usual, g is a
linear series of dimension r and degree d on C, which may be possibly
incomplete. If D is a divisor on C, we write |D| for the associated
complete linear series on C. By K¢ or K we denote a canonical divisor
on C, and |K¢| is the canonical linear series on C. The series [K — g7| is
called the dual series of g;. If L is a line bundle (or an invertible sheaf) we
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abbreviate the notation H*(C, L) (resp. dim H*(C, L)) by H*(L) (resp.
h*(L)) for simplicity. Also, for a divisor D on C we write H:(D), h*(D)
instead of H*(C, O¢(D)), dim H*(C,O¢(D)). Since the Jacobian variety
J(C) = Pic?(C) is an abelian variety, it will cause no confusion to denote
the addition on J(C) by +. In particular for two non-empty subsets A
and B of J(C) we set A+ B := {a+tbla € A,b € B}. A base-point-free g},
on C defines a morphism f : C — P" onto a non-degenerate irreducible
(possibly singular) curve in P". If f is birational onto its image f(C)
the given g7, is called simple. In case the given g is not simple, let C’
be the normalization of f(C). Then there is a morphism (a non-trivial
covering map) C — C’ and we use the same notation f for this covering
map of some degree k induced by the original morphism f : C — PT.

We recall the notions of the Clifford index and the Clifford dimension.
For a line bundle L on C, the Clifford index of L, denoted by Cliff(L),
is defined by CLff(L) = deg L — 2h%(L) + 2. The Clifford index of C is
defined as

Cliff(C) = min{Clff(L)|h°(L) > 2, h}(L) > 2}.

We say that a line bundle L computes the Clifford index of C if A°(L) >
2,k (L) > 2 and Cliff(L) = Cliff(C). Then the Clifford dimension of C
is defined as follows:

Cliff dim(C) = min{h°(L) — 1|L computes the Clifford index of C}.

Two quantities, the gonality and the Clifford index are related closely.
We shall mention it in Lemmas 7 and 8.

2. Lemmas

In this section, we prepare several lemmas some of which are well
known. Throughout this section, except for Lemma 9, let C be a smooth
curve of genus g.

First, we give lemmas which admit genus bounds. For positive in-

tegers d,r, let m = {;‘“l_:H’ my = [d;l], e=d-m(r—-1) -1,

e1=d—myr—1and p; = [T_E—LI] Set

mld,r) = m(mT_—ll(r—l)—f-ms
mi(d,r) = ml($9r+m1(81+1)+u1.

2
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LEMMA 1 (Castelnuovo’s bound). Assume C admits a base-point-free
and simple linear series g§;. Then g < w(d,r).

LeEMMA 2 ([1, §7]). If C admits infinite number of base-point-free
simple linear series g}’s, then g < m(d+ 1,7+ 1).

The following is a special case of the so-called Castelnuovo-Severi
inequality.

LEMMA 3 (Castelnuovo-Severi bound [2, Theorem 3.5]). Assume
there exist two curves Cy and Cy of genus g1 and go, respectively, so
that C is a k;-sheeted covering of C; (i = 1,2). Ifk; and ky are coprime,
then g < (k1 — 1)(k2 — 1) + k1g1r + k2go.

The following lemma is a description of nearly extremal curves in
projective space.

LEMMA 4 ([7, Theorem 3.15]). Assume C admits a base-point-free
simple linear series gj;. If g > m(d,r) and d > 2r 4+ 1, then C lies on a
surface of degree r — 1 in P".

We also need the following lemmas which are easy consequences of
(3, III, Exercise B-6]; note that there is a misprint in the exercise. The
correct formula should be 7(D + €) > r(D) + 2r(€) — (€ — D) — 1.

LEMMA 5. Assume C' admits a base-point-free simple linear series gj,.
Let p=dim|2g}|. Ifd > 2r — 1, then p > 3r — 1 and if d > p — 1, then
dim [3g%| > 2p — 1.

LEMMA 6. Assume C admits a base-point-free simple linear series g
and a pencil gt. If dim|g} — gi| = r — p, then dim|g] + gi] > 7 + p.
Equivalently, if dim |}, + g&| = r + p, then dim g} — g}| < 7 — p.

The following lemmas are concerned with the gonality and the Clif-
ford index.

LEMMA 7 ([5, Theorem 3]). Let ¢ = Clff(C). Then any linear se-
ries gy (d < g — 1) computing c is of degree d < 2(c + 2) unless C is
hyperelliptic or bi-elliptic.

LEMMA 8 ([6]). Let ¢ = Cliff(C) and r = Cliff dim(C'). Then,
1) gon(C) =c+ 2 if and only if r = 1.
2) gon(C) = c+ 3 if and only if r > 2.
3) If r = 2, then C is a smooth plane curve of degree ¢ + 4.
4) If3<r<9, then g=4r —2 and c = 2r — 3.
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LEMMA 9. Let C be a smooth plane curve of degree n > 7. Let g,
(d < n(n — 4)) be a special linear series on C. If Cliff(g};) = Cliff(C) =
n — 4, then (d,r) = (n,2). If Cliff(g}) = n — 3, then (d,r) = (n —
L,1),(n+1,2) or ((n—4)n—-1,(n—-4)(n—-1)/2—-1) ifn > 8. In
case n = 7, in addition to the above possibilities, there exists another
possibility that (d,r) = (14, 5).

Proof. This lemmia is a straightforward consequence of the following
Noether bound (cf. [8]): Write d=kn —ewith1<k<n-4,0<e<
n — 1. Then

(k—1)(k+2)

k(k + 3)
kkr3)

if e>k+1
—e if e<k+1.

r <

Assume e > k+ 1. If £k = 1, then r = 0, whence we may assume k > 2.
Then,
d—2r—(n—-3) kn—e—(k—1)(k+2)—n+3

kn—(n—-1)—-(k—-1)(k+2)—n+3

(k—2)(n—k—-3)>0.

Equality occurs if k =2, e =n—1lork=n—-3,e =n—1, ie. if

d=n+1ord=(n—4)n+1 and r attains the upper bound.
Assume e < k + 1. Then,

d—2r—(n-—4)

2
2

> kn—e—k(k+3)+2e—n+4

> kn—k(k+3)—n+4
(k—=1){n—k—-4)>0.

Thus, d —2r —(n —4) = O holdsonly if k = 1, e = 0 or k = n — 4,
e =0, ie. if d =n or d = (n — 4)n. The latter case is excluded by the
assumption. d—2r—(n—4) =l holdsifk=1,e=1lork=n—4,e =1,
ie.ifd=n+1ord=(n—4)n—1 and r attains the upper bounds. In

case n = 7, in addition to the above cases, d — 2r — (n — 4) = 1 holds if
k=2,e=0,1ie d= 14 and r = 5. This proves the lemma. O

3. Case d — 3r

In this section, we shall treat the case dim Wj;(C) = d — 3r.

THEOREM 1. Let C be an even gonal curve of genus g which does not
have an involution. Assume there exist positive integers r and d < g—2,
so that dimWjJ(C) = d — 3r > 0. Then, C is 4-gonal and one of the
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following holds:

i) C is a smooth plane quintic (g = 6) and dim W}(C) = 1.

ii) C is a plane curve of degree 6 and of genus 8 or 9 and dim W2(C) = 0.

iii) C is an extremal curve of degree 3r in P" (g = 3r+3) and dim W{, (C)
=0

iv) C lies on a smooth normal scroll in P", p,(C) =3r+3, g =3r+2
and dim W3,.(C) = 0. :

v) C lies on a cone over a rational normal curve in P"~! for r = 3 or 4,
g =3r+2 and dimWg (C) =0.

vi) C is an extremal curve of degree 3r + 2 in P"*! (g = 3r + 3) and
dim W3, (C) = 37":;12(0) — W(C) is of dimension 1.

REMARK. In the statements i) — vi) of the theorem, it is obvious
that W7 (C) + Wy (C) also satisfies the dimension hypothesis as long as
d+n < g—2. The same remark will be valid for the statement of
Theorem 2, too.

Proof. Let Z be an irreducible component of W7 (C) of dimension
d — 3r and let g;(z) be the linear series associated to an element z € Z.
Using the same procedure as in the proof of [11, 9], we may assume g[}(2)
is complete and base point free for general z € Z.

First, assume g}(z) is compounded for a general z € Z. Then g}(%)
induces an n-sheeted covering map 7 of C onto a smooth curve C’ of
genus ¢’ with n|d and n > 3. Then g}(z) is the pull back of a base point
free complete linear series g, /n, O C' with respect to .

Assume gj, is non-special. Then ¢’ = % —7r. Let ¢ = 0. Then

% —r=¢" =0and Z C r-W}(C). Hence, by H. Martens’ theorem [12]
and the hypothesis, we have

n—3>dimW2(C)>d—3r=(n—3)r

Since g’ = 0, we have n > 4, whence r = 1. Thus, dimW}(C) =d — 3.
Then, by Mumford’s theorem [13], C is a smooth plane quintic.

Let ¢’ > 0. By de Franchis’ theorem, we may assume that the map
W, (C") = Z is dominant. Hence, d—3r = dim Z < dim W, (C") =
g = % —r. It follows that 2nr > (n — 1)d > 3(n — 1)r. Thus n < 3,
namely, n = 3 and d = 3r. This implies ¢ = %l — 7 = 0 which is a
contradiction.
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Assume g}, In is special. By H. Martens’ theorem [12], we have

d—3r=dimZ < dideT/n(C") < g— — 2r.

Hence, we have 3(n — 1)r < (n —1)d < nr. Thus n < 3. This is a
contradiction.

Next, we consider the case that gjj(z) is simple for a general z € Z,
whence r > 2.

By the Accola-Griffiths-Harris theorem [7, p.73], one has the following
inequality;

d—3r < dimWJ(C) < dimTjp Wi (C) < h°(2D)—3r for D € gi(2).

Hence, we have d < h%(2D) = 2d + 1 — g + h}(2D) and A'(2D) > 1.
First, we assume h!(2D) > 2. Then

Cliff(C) < Cliff(2D) = 2d — 2(h°(2D) —1) < 2.

If Cliff(C) < 1, then C is either hyperelliptic, trigonal or a smooth
plane quintic. The former two cases conflict with our assumption. Since
r > 2, a smooth plane quintic does not occur. Hence, Cliff(C) = 2 and
|2D| computes the Clifford index. Moreover, we have h%(2D) = d and
gon(C) = 4.

If 2d < g — 1, then by Lemma 7, we have d < 4 which contradicts
r > 2. Hence, we have 2d > g. Consider the dual of 2g] = gggz;
\Ko —2g5] = 93, %254 Let p=g—d—2and § = 29— 2 —2d. Again by
Lemma 7, we have § < 8. Since dim Wf(C) < 6 — 3p, we have p < 2.

Case p = 2. We have d = g — 4, whence § = 6. Since Cliff(C) = 2,
g¢ = |K¢ — 2g7| is simple. This linear series induces a plane curve of
degree 6 with singular points because of gon(C) = 4. Thus, g < 9 and
d = g — 4 < 5. On the other hand, since dim W7(C) < dim WZ(C) = 0,
we have d = 3r which is impossible.

Case p = 1. We have d = g— 3, whence § = 4. Since dim W}(C) <1,
we have d = 3r or 3r + 1. In case d = 3r + 1, we have dim W;(C) = 1,
whence C is a smooth plane quintic. Then ¢ = 6 and d = 3. This is
absurd. In case d = 3r, if r = 2, a simple gg induces a plane curve of
degree 6. Since C is 4-gonal and d = g — 3, the plane curve has exactly
one ordinary node or cusp, i.e., g =9. If » > 3, a simple g3, induces an
extremal curve of degree 3r in P" which is 4-gonal.

Next, we assume h!(2D) < 1. In this case d = g — 2. Since 2D =
Kec — P — @ for some PQ € C, we have 0 < dimZ < 2. Hence,
d=3r,3r+1or 3r+2. Let d = 3r. If r = 2, then C is a plane curve
of degree 6 with at most 2 singularities of multiplicity 2. Let r > 3
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and C’ be the model of C of degree 3r in P" induced by g§,. Since
g > m(3r,7) = 3r + 1, by Lemma 4, C’ lies on a surface S of degree
r — 1 in P". Since the Veronese surface in P® cannot contain curves of
odd degree, S is either a cone over a rational normal curve in P"~! or a
rational normal scroll in P7.

In case § is a rational normal cone with vertex v over a rational
normal curve in P"~!. Let m > 0 be the multiplicity of C’ at v. Let n
be the degree of the (base-point-free) pencil cut out on C’ by the ruling
of the cone S. Considering a sufficiently general hyperplane H C P"
passing through the vertex v, one sees that H NS is a union of r — 1
lines through v and hence

d—m=3r-m=n(r-1).

Since n > 4 and r > 3, the possibility of n,m,r are (n,m,r) = (4,0,4)
or (4,1,3).

Assume that S is a smooth rational normal scroll. Recall that Pic(S)
is freely generated by the classes H of a hyperplane section of S, and L of
a line of the ruling. Put C' ~ aH+BL. Since g = 3r+2, po(C') = 3r+2
or 3r + 3. By the adjunction formula we have a system of equations

pa(C) = %‘“—‘—2)@ —D+(r—2+p)a—1),

d = (r—la+p8

If p,(C") = 3r+2, there is no integral solution of a, 8. If p,(C') = 3r+3,
then we have ((r—1)a—(3r+1))(a—4) = 0. Thus, C’ is always 4-gonal.

Let d = 3r+1. In this case, dim Z = 1. For a general 2’ € Z, we have
dim |g}(2) + ¢5(2’)| > 3r and dim |K¢ — (g5(z) + g5(2'))| = 0. Let ¢, 9
be the map induced by |K¢ — g5(z)| and g7(¢’) onto a curve ¢’ C P,
C, C P", respectively. Let m be the projection of C’ to C,/. Since there
are infinitely many 2’ € Z, we may assume that the center of 7 is not a
singular point on C’. Then deg C' = deg C,»+1 = d+ 1, whence we have
a linear series ggﬁ = gg;" 4}2. Hence, by Theorem A, C is an extremal
curve of degree 3r + 2 in P71,

Let d = 3r + 2. In this case, dim Z = 2. As in the preceding case, we
have infinitely many linear series g5*'s’s on C. Thus dim Wi T5(C) > 1
which is absurd because of 3r + 3 = g — 1 and Theorem A.

This completes the proof. |



Martens’ dimension theorem for curves of even gonality 673

4. Cased—3r—1

In this section, we shall treat the case dim Wj(C) =d — 3r — 1.

THEOREM 2. Let C be an even gonal curve of genus g which does not
have an involution. Assume there exist positive integers r and d < g—4,
so that dim W} (C) = d—3r—1 > 0. Then, C is either 4-gonal or 6-gonal
and one of the following holds:

1) C is 4-gonal.

1-i) dim W} (C) = 0.

1-ii) C is an extremal curve of degree 3r + 5 in P™*2 (g = 3r + 6) and
W3 .1(C) C WA (C) — g} is of dimension 0.

1-iii) C lies on a smooth normal scroll in P™*1 p,(C) = 3r+6, g = 3r+5
and Wi _1(C) C K — WitL(C) — g} is of dimension 0.

1-iv) C lies on a quadric surface of degree 10 in P2, g = 15 and dim Wf‘o
(C)=0.

1-v) C is an extremal curve of degree 13 in P* (g = 18) and dim W(C)
=0.

2) C is 6-gonal.

2-i) C is a plane curve of degree 8 with one ordinary node or cusp
(g = 20) and dim W5(C) = 0.

2-ii) C is a smooth plane septic (g = 15) and dim W2(C) = 0.

Proof. Let Z be an irreducible component of W} (C) of dimension
d — 3r — 1 and let g};(z) be the linear series associated to an element
z € Z. Using the same procedure as in the proof of [11, 9], we may
assume g}(z) is complete and base point free for general z € Z.

First, assume g};(z) is compounded for a general z € Z. Then g(z)
induces an n-sheeted covering map 7 of C onto a smooth curve C’ of
genus ¢’ with n|d and n > 3. Then gj(z) is the pull back of a base point
free complete linear series g /n, O1L C' with respect to .

Assume g7 In is non-special. Then ¢ = % — 7. Let ¢ = 0. Then

% —r=g =0and ZCr- W,}(C) Hence, we have

n—3>dmWi(C)>d—3r—1=(n-3)r—1

Thus, (r,n) = (1,d) or (2,4). In case (r,n) = (1,d), since dim W}(C) =
d — 4, by Mumford’s theorem [13], C is 4-gonal and d = 4. By the
hypothesis, we have ¢ > d + 4 = 8, whence C is not a smooth plane
quintic. Since C' does not have an involution, C' is not bielliptic. Hence,
for every 4-gonal C' satisfying our assumption, we have dim W1 (C) =
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0. Let (r,n) = (2,4). Thend =8 and 1 = n—3 > dimW}(C) >
dim W}(C) > d—3r — 1 = 1. Hence, C is a smooth plane quintic which
is impossible as like as the case (r,n) = (1,d).

Let ¢ > 0. By de Franchis’ theorem, we may assume that the

%

map g/n(C”) I, Z is dominant. Hence, d — 3r — 1 = dimZ <
dimWg, (C) = ¢ = %—— r. Hence, (n — 1)d < n(2r + 1). Since
d > 3r + 1, it follows that nr < 3r+1,ie. n=4 (r =1) or n = 3.
If n =4, r = 1, then d = 4 whence ¢ = 0 which is a contradic-
tion. Let n = 3. Since ¢’ = %l—r > 1, we have d > 3r + 3 and
(n—1)(3r +3) < d(r — 1) =n(2r + 1). This contradicts n = 3.
Assume gy, is special. By H. Martens’ theorem [12], we have

d—-3r—-1=dimZ < dimWJ/n(C") < g —2r.

Hence, we have (n — 1)d < n(r+1) and d > 3r + 1 which implies n < 2.
This is a contradiction.

Next, we consider the case that g(z) is simple for a general z € Z,
whence r > 2.

By the Accola-Griffiths-Harris theorem[7, p.73], we have h°(2D) >
d—1 for D € g7(2). Since g > d + 4, we have h}(2D) > 2.

Cliff(C) < Cliff(2D) = 2d — 2(h°(2D) — 1) < 4.

If Cliff(C) = 0, then C is hyperelliptic. If Cliff(C) = 1, then C is a
smooth plane quintic (because C is of even gonal), whence g = 6 and
d < 2 which is absurd. Thus, we have Cliff(C) > 2.

If h%(2D) = d, then Cliff(C) = 2 and 2D computes the Clifford
index. Thus, by the same procedure as in the proof of Theorem 1, we
have a contradiction. Note that we need not take care about the case
g—d—2 =1 because d < g — 4 by the hypothesis.

Hence, we may assume h°(2D) = d — 1.

Let Cliff(C) = 4. Since 2D computes the Clifford index, by Lemma
7 we have 2d > g, 6 = 29 — 2 — 2d < 12, whence p =g —d — 3 < 4.
Hence, the Clifford dimension of C, Cliff dim(C) < 4.

If 3 < Cliffdim(C) < 4, then by Lemma 8, C is of odd Clifford index.
If Cliffdim(C) = 2, then C is birationally equivalent to a smooth plane
octic which is of 7-gonal. Thus, Cliff dim(C) = 1 and gon(C) = 6. We
shall consider the cases p = dim |K¢ — 2D| = 1,2, 3,4, separately.

First, assume p = 1. Since gon(C) = 6, we have dim W{(C) < 1.
Hence,

d—3r—1=dimWj(C) < dim W(C) < 1.
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Let dimW}(C) = 0. Then, d = 3r + 1, g = 3r + 5. Since Ciff(C) =
4<d—-2r=r+1, we have r > 3. Let C’ be the model of C' of degree
3r + 1 in P" induced by ¢5,,,. Since m(3r + 1,7) = 3r + 3, by Lemma
4, C' lies on a surface S of degree r — 1 in P".

Assume r = 5 and S is a Veronese surface. Since d = 3r + 1 = 16,
we deduce that C’ is the image of a plane curve C” of degree 8 with one
ordinary node or cusp under the Veronese embedding.

Let S be a rational normal cone with vertex v over a rational normal
curve in P"~!. Let m > 0 be the multiplicity of C’ at v. Let n be the
degree of the pencil cut out on C by the ruling of the cone S. Then, as
in the proof of Theorem 1, we have

d—m=3r+1-—m=n(r-1),

which is impossible because of n > 6 and r > 3.
Let S be a smooth rational normal scroll. Put C’ ~ aH + 3L, where
H and L are the classes of a hyperplane section of S and a line of the
ruling, respectively. If r = 3, the existence of gi”o implies gon(C) < 5.
For r > 4, since g = 3r+5, po(C') = 3r+5 or 3r+ 6. By the adjunction
formula we have a system of equations
a-—-1{a—2
pa(@) = C=ED6 s 2481,
d = (r—1a+g.

If po(C") = 3r+5, there is an integral solution r =5, o = 5 and 8 = —4.
If po(C") = 3r + 6, then we have ((r — 1)a —3(r +1))(a —4) = 0. Thus,
C' is 4-gonal.

Let dimW7(C) = 1. Since dim W¢(C) = 1, by [10, Corollary 3.3]
and our hypothesis, C is a 3-sheeted covering of an elliptic curve E.
Let ¢ : C' — E be the covering map. Note that for any pair of points
P,Q € E,|o*(P+Q)| = gi on C. Let 1 : C — C’' C P’ be the morphism
induced by gj. Since Z + Z = 2Z C Ko — Wi, |g; + gl = git2.
Hence, by Lemma 6, we have dim|g; — gi| > 7 — 3. It follows that
the image of ¢*(P + Q) under 2 lies on a plane in P" for any pair of
points P,Q € E. Thus, for any point P € E, the image of ¢*(P)
under v lies on a line and the lines (w*(P)) C P” are concurrent,
i.e. there exists a point py € P" such that py € 9(p*(P)) for any
P € E. Take general r — 1 points Pj,...,P..; € E. Then, H =
V(p*(Pr+ ---+ P-_1)) is a hyperplane in P" and py € H. Thus, for
any point p in H.C —(¢*(P1+ - -+ Pr_1)), ¥(¢*(¢(p))) C H, whence
deg H.C' is a multiple of 3. This is a contradiction.
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Assume p = 2. If the linear series g2 = |K¢ — 2D)| is composite, it
follows that C' is a two-sheeted cover of a curve or 4-gonal which is not
our case. Thus, g2 is simple. If dimWZ&(C) = 1, then by Lemma 2,
g <12, whence d = g — 5 < 7. This implies that Cliff(C) < d —2r < 3.
Hence, we have

d—3r — 1 = dim Wj(C) < dim WZ(C) =0,

and d = 3r + 1. The existence of a simple g2 implies g < 21. If g = 21,
then C' is birationally equivalent to a smooth plane octic, which is of
7-gonal, whence g < 20 and r < 4. If r = 4, then d = 13, g = 18. Hence
C is an extremal curve of degree 13 in P4, whence gon(C) = 4. If r = 3,
then the existence of a simple g3, implies gon(C) < 5. If r = 2, then
Cliff(g2) = 3. Thus we have Cliff(C) # 4 for all of these cases.

Assume p = 3. As in the preceding case, we may assume g3, = |K¢g —
2D| is simple. Hence, by Lemma 1, we have g < 16 and d = g — 6 < 10.
Since d — 3r — 1 = dim W} (C) < dim W3 (C), if dim W, (C) = 0, then
d =3r+1, whence d = 7 or 10. If d = 7, then Cliff(g2) = 3. Thus we
have CLff(C) # 4 in both cases. If d = 10, then C is an extremal curve
of degree 10 in P3, whence gon(C) < 5. If dimW3(C) = 1, then by
Lemma 2, g < 7(11,4) and d < 6 < 3r + 1 for » > 2. This is absurd.

Assume p = 4. As in the case p = 2, we may assume g%, = |K¢ —2D|
is simple. Hence, by Lemma 1, we have ¢ < 15 and d = g—7 < 8. Since
d—3r—1=dimWj(C) < dim W,(C) = 0 and r > 2, we have r = 2
and d = 7. It follows that Cliff(C) # 4.

Let Cliff(C') = 3. Since gon(C) is even, we have gon(C) = Cliff(C)+3,
whence A = Cliffdim(C) > 2. If A > 3, the existence of a very ample
g%)\ +3 induces gon(C) < 4. It follows that C' is a smooth plane septic.
Since d > 7, for D € g}(2), z € Z, we have deg |Kg—2D| < 2g—2—-14 =
14. Thus, by Lemma 9, the possibilities of (p,8) for g§ = |K¢ — 2D|
with Cliff(¢§) = 4 are (p,8) = (1,6),(2,8) or (5,14). Then, we have
d = 11,10,7, respectively. Since dim W} (C) = dim W2(C) = 1, we have
r = 3, in cases d = 11,10. However, by the Noether bound (appeared in
the proof of Lemma 9), we have r < 2 which is a contradiction. Thus,
only possible case is (d,r) = (7,2). In this case, C is a smooth plane
septic and dimW2?(C)=7-3-2—-1=0.

Let Cliff(C) = 2. Since gon(C) is even, we have gon(C) = 4 and
Cliffdim(C) = 1. From ClLff(C) = 2 < 2d — 2h%(2D) + 2, we have
RO(2D) =d—1or d.

Assume h%(2D) = d. Then, |2D| computes the Clifford index. If
2d < g —1, by Lemma 7, we have d < 4. This case does not occur. Let
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2d > g. Let 6 = deg|Ko —2D| =29 —2—2d and p = dim |K¢ —2D| =
g—2—d. Since § > 3p, we have d > g—4, whence d = g—4. Thus, § = 6,
p=2. If |[Kc—2D] is composite, then C is trigonal. If it is simple, then
g < 10. On the other hand, we have 7 < 3r +1 < d =g — 4 < 6 which
is a contradiction.

Hence, we may assume h°(2D) =d — 1. Let A = d — 2 = dim|2D|.
Then, by Lemma 5, we have

(1) A>3r—1>5.

Applying Lemma 1 to 2g}(2) = gg‘)\+4 (m =2, =5if A > 7 and
m=3,e =6—\if A=25,6), we have

(2) g<A+9 if A>6 and ¢g<15 if A=35.

We now consider 3g}(z) = ggiié"'“ (u > 0); cf. Lemma 5.

(I) If it is non-special, then g = (3A+6) — (2A~14+p) = A+ T7—pie.
A+6<g<A+T

(II) Suppose 3g7(z) = g§§;é+u (1 > 0) is special. Since |K¢ — 3¢ =

gg;_’\gz\gjg" (u > 0), we have 2g —3A—8 >0, i.e. g > %/\ + 4. Note that
ifg— A—8>1, we have 29 — 3\ — 8 > 4, because we assumed that
gon(C) =4. Thus, if g = A+9 then4 < 2g—3XA-8 =2(A+9)-3\—-8 =
—A+ 10, whence A = 5 or 6. Therefore, if A > 7 then g < A+ 8 by (2).
Consequently, 0 < 2g ~ 3XA — 8 < 2(A+8) — 3\ — 8 = —\ + 8, whence
A < 8. Thus, when 3g7(2) is special the only cases we have to study are
A=5with1l1 <3A+4<g<15and A=6with13< g <15 A =7
with g = 15 and A = 8 with g = 16.

(Ii) First, assume that 3¢, is non-special and g = A+ 7, i.e. |K¢ —
295(2)| = g3 ,

Assume g2 is composite. Since C is not a 2-sheeted covering of a
curve, we have gZ = 2g}. Thus, d—3r — 1 < dim W] (C) < dim W2 =0,
ie. d=3r+1and g =3r+6. If|g ., +gi| = g5 2%, then this
simple linear series induces an extremal curve of degree 3r + 5 in Pr+2,
It is of course 4-gonal. If |g5.,; + gi| = g5T)s, then by Lemma 6, we
have |g5,.,1 — gi| = g4 5. By Theorem 1, this case does not occur if
gon(C) = 4.

Assume g3 is simple with base points. Let g2 (n < 7) be base point
free. If n < 6, then by Lemma 1, ¢ < 10, which contradicts that

g>Ax+7 E 12. Let n = 7. Then, C is a plane curve of degree 7.
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By Lemma 1, we have dim |g% + gj| < 4. Thus, by Lemma 6, we have
dim |g2 — g}| > 0, whence gs is cut out by a pencil of lines. Thus C
is a plane curve of degree 7 with one singular point of multiplicity 3
whence g = 12. Then, d = (29 — 2 — 8)/2 = 7 and r = 2. In this case,
|Kc — 2¢2| = 2g}. Thus g3 = |K¢ — 2¢2| is not simple.

Assume gg is a base point free simple linear series. Since gon(C) = 4,
we have g < m(8,2)—1=20. Hence,3r—1<A=g¢g—-7<13,ie. r <4.

If A > 3r > 6, then dimW82 >d—3r—1=A—3r+1 > 1. Thus, using
Lemma 2, we have A+ 7 = g < 12, i.e. A < 5, which is an absurdity.
Hence, A =3r — 1.

Let r =2. Then, g=A+7=12and d = (29 — 2 —8)/2 = 7. In this
case, |[K¢ — 2¢%| = 2¢}.

Let r = 3. Then, g=A+7=15and d = (29 — 2 — 8)/2 = 10. Since
gon(C) = 4, this case occurs only if g3, = g1 + g¢.

Let r = 4. Then, g =A+7 =18 and d = (29 —2—8)/2 = 13. Hence,
C is an extremal curve of degree 13 in P* which is 4-gonal.

(I-ii) Next, assume that 3¢} is non-special and g = A+ 6, i.e. [K¢ —
2g%(2)| = gi. Since gon(C) = 4, we have dim W§ = 2, whence dim W]
(C) <2

Let dim Wj(C) =0. Then,d=3r+1, A=3r—1and g =3r +5. If
dim|g5, .1 — gi| = — 1, it would satisfy the hypothesis of Theorem 1.
However, we could not find the case g = 3(r — 1) + 8 in the list of the
conclusion in Theorem 1. Hence, this case does not occur.

If dim |g§, ., — 94| <7 — 2, then, by Lemma 6, we have dim |g5.,; +
93| > r+2, whence |K¢ — (g5,,1 + 93)| = g5}5 and equality hold in the
above inequality. Hence, this case corresponds to Theorem 1 iv), i.e. C
lies on a normal scroll in P™*! with p,(C) = 3r + 6.

Let dimWj;(C) = 1. Then, d = 3r +2, A = 3r and g = 3r + 6.
If dim g}, ,(2) — gi| = r — 1 for a general z € Z, we would have
dim W3, ,(C) = 1 which would satisfy the hypothesis of Theorem 1.
However, we could not find this case in the list of the conclusion in
Theorem 1. Hence, this case does not occur. If dim |g§, 5 (2)—gi] < r—2
for a general z € Z, then as in the case dim W} (C) = 0, we would have
dim W42, (C) = 1 which would not occur, again.

Let dim WJ(C) = 2. Then,d=3r+3, A\=3r+1and g =3r+7. As
in the previous case, we have dim W5, (C) = 2 or dim WL (C) = 2.
Both cases do not occur.

22—14p

(IT) Next, assume 3g7(2) = g35,5 ' (4 > 0) is special.
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We already know that only cases we have to consider are A = 5,
12<9g<15A=6,13<9g<15;A=7,g=15and A =8, g = 16. We
will treat these cases separately.

(II-1) Case A =5,d =7,r = 2,12 < g < 15.

If g = 15, then C is a smooth plane septic, whence CLff(C) # 2. If
12 < g < 14, C has a singular plane model of degree 7 with one singular
point of multiplicity 3, whence g = 12 and gon(C) = 4.

(II-ii) Case A = 6,d = 8,7 = 2,13 < g < 15 and dimWZ(C) =8 - 3 -
2—-1=1.
This case does not occur by Lemma 2.

(Il-iii) Case A = 7,d = 9,7 = 2,9 = 15 and dim W(C) = 9-3-2—1 = 2.

Since |K¢ — 2g2(2)| = g3, we have 2 = dim WZ(C) < dim W3 (C) <
10 — 3 -3 = 1 which is a contradiction, and hence this case does not
occur.

(II-iv) Case A =8,d = 10,7 = 2,g = 16 and dim W (C) = 3.

For a general z € W2,(C), 3g%,(z) is special and since 3d = 2g—2 one
must have 3g%,(z) = K. Noting the fact that there exist only finitely
many line bundles on C whose triple is the canonical bundle, one sees
that dim W2,(C) = 3 is a contradiction. Therefore this case does not
occur.

(II-v) Case A = 8,d = 10,7 = 3,9 = 16 and dim W (C) = 0. This is
the case of extremal curve of degree 10 in P3, which is of odd gonality
5.

This completes the proof. O
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