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STRONG LAWS OF LARGE NUMBERS FOR
RANDOM UPPER-SEMICONTINUOUS FUZZY SETS

YuN KyoNG Kim

ABSTRACT. In this paper, we concern with SLLN for sums of in-
dependent random upper-semicontinuous fuzzy sets. We first give
a generalization of SLLN for sums of independent and level-wise
identically distributed random fuzzy sets, and establish a SLLN for
sums of random fuzzy sets which is independent and compactly uni-
formly integrable in the strong sense. As a result, a SLLN for sums
of independent and strongly tight random fuzzy sets is obtained.

1. Introduction

Since Puri and Ralescu [16] introduced the concept of fuzzy ran-
dom variables, there has been increasing interest in limit theorems for
fuzzy random variables because of its usefulness in several applied fields.
Among others, strong laws of large numbers for sums of independent
fuzzy random variables have been studied by several people. Klement,
Puri and Ralescu [13] proved some limit theorems which includes a
SLLN. Inoue [8] obtained a SLLN for sums of independent tight fuzzy
random sets. Hong and Kim [7] studied Marcinkiewicz-type law of
large numbers for fuzzy random variables under additional assumption.
Molchanov [15] gave a short proof of SLLN for i.i.d. fuzzy random vari-
ables. Joo and Kim [11] obtained a SLLN for independent and levelwise
identically distributed fuzzy random variables.

In this paper, we first give a generalization of the result in Joo and
Kim [11] in a more general setting. Also, we establish a SLLN for sums
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of random fuzzy sets which is independent and compactly uniformly
integrable in the strong sense and satisfy Chung’s condition.

2. Preliminaries

Let K(RP) denote the family of non-empty compact subsets of the
Euclidean space RP. For A, B € K(RP), let us denote

6(4,B) = Sgg;ggla -,

where |.| denotes the Euclidean norm. Then the space K(RP) is metriz-
able by the Hausdorff metric h defined by

A norm of A € K(RP) is defined by

Al = h(A, {0}) = suplal.
acEA

It is well-known that KC(RP) is complete and separable with respect to
the Hausdorff metric h ( See Debreu [6] ). The addition and scalar
multiplication on K(RP) are defined as usual:

A®B = {a+b:ac Abe B}
A = {da:a€ A}

for A,B € K(RP) and X € R.

In what follows, clA denotes the closure of a set A C RP. Let F(RP)
denote the family of all fuzzy sets @ : R — [0,1] with the following
properties;

(1) @ is normal, i.e., there exists € RP such that @(z) = 1;
(2) @ is upper semicontinuous;

(3) supp @ = cl{z € RP : 4(z) > 0} is compact.

For a fuzzy set 4 in RP, the a-level set of 4 is defined by

Ig {{x:~(x)2a}, fo<a<l
all =
supp i, fa=0.
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Then, it follows immediately that for each o € [0, 1],
@ € F(RP) if and only if L,a € K(RP).
The linear structure on F(RP) is defined as usual;

(LD 0)(2) = S min(@(z), (y)),

pae) = | M, AT

for 4,7 € F(RP) and A € R, where 0 = Itoy denotes the indicator
function of {0}. Then it is known that for each o € [0, 1],
Lo(@® %) = Laii ® L@
and
Lo (M) = ALo .
LEMMA 2.1. For @ € F(RP), we define
fﬁ : [Oa 1] - (’C(Rp)ah')afﬁ(a) = Lyu.

Then the followings hold;

(1) fa is non-increasing, i.e., a < 8 implies fiz(a) D fz(B),

(2) fu is left continuous on (0, 1],

(3) fa has right-limits on [0,1) and f; is right-continuous at 0.
Conversely, if g : [0,1] — K(RP) is a function satisfying the above
conditions (1) — (3), then there exists a unique ¥ € F(RP) such that
g(a) = Ly for all a € [0,1].

Proof. See Lemma 2.2 of Joo and Kim [10]. O

We denote cl{z € R : @4(z) > a} by L,+@. Then the right limit of
fa at ais L,+4. Now we define for J C [0, 1],

(2.1) wy(J) =  sup h(La, G, Lo, )

ay,az€d

then it follows that for 0 < a < <1,
wﬁ(avﬁ) = wﬂ(a’ﬁ] = h(Loﬂ'aaLﬂa)’

and
wg[a,ﬂ) = wﬁ[a,ﬁ] = h(La’a,ng’a).
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LEMMA 2.2. For each 4 € F(RP) and € > 0, there exists a partition
0=0p <oy <---<a,=10f|0,1] such that

(2.2) waloi—1, ) <€, i=1,2,...,7

Proof. See of Lemma 2.3 of Joo and Kim [10]. O

Now, in order to generalize the Hausdorff metric on IC(R?) to F(RP),
we define the two metrics dy,ds on F(RP) by

1

(2.3) dy (i1, 3) = / h(Lail, L) doy,
0

(2.4) doo(it,5) = sup h(Lail, Lad).
0<a<1

Also, the norm of 4 is defined as

]l = doo (@,0) = sup |-
IELQ’&

Then it is well-known that F(RP) is complete with respect to two
metrics d; and d,, and that F(RP) is separable with respect to d; but
is not with respect to du.(see Klement et al. [13]). Joo and Kim [10]
introduced a new metric ds on F(RP) which makes it a separable metric
space as follows:

DEFINITION 2.3. Let T denote the class of strictly increasing, con-
tinuous mapping of [0, 1] onto itself. For 4,7 € F(RP), we define

ds(t,7) = inf{e > 0 :there exists a t € T such that

sup |t(a) — a| < € and doo (4, t(D)) < €},
0<a<1

where £(7) denotes the composition of ¢ and ¢.
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3. Main results

Throughout this paper, let (2,4, P) be a probability space. A set-
valued function X : Q — K(RP) is called measurable if for each closed
subset B of RP,

X YB)={w: X(w)NB#0} e A
It is well-known that the measurability of X is equivalent to the mea-~
surability of X considered as a map from 2 to the metric space K(R?)
endowed with the Hausdorff metric h. A set-valued function X : @ —

K(RP) is called a random set if it is measurable.
A random set X is called integrably bounded if

E|X] < oo.
The expectation of integrably bounded random set X is defined by
E(X)={E(f): f € L(Q,RP)and f(w) € X(w)a.s.},

where L(Q, RP) denotes the class of all RP-valued random variables f
such that E|f| < oo.

It is well-known that if X and Y are integrably bounded random sets,
then

(1) B(X) € K(RP),

(2) EX®Y)=E(X)® E(Y),

(3) E(AX) = AE(X).

The following SLLN for random sets was proved by Artstein and
Vitale [2] and generalized by Artstein and Hansen [1].

THEOREM 3.1. Let {X,} be a sequence of independent and identi-
cally distributed random sets. If E||X;|| < oo, then

lim h(l

n—oo n

where co(EX1) denotes the convex hull of EX].

'651 Xi,co(EX,)) = 0 as.

The above SLLN for random sets was generalized to the case of inde-
pendent and compactly uniformly integrable random sets by Taylor and
Inoue [17], Uemura [18]. Note that {X,} is called compactly uniformly
integrable if for each € > 0 there exists a compact subset A of the metric
space K(RP) endowed with the Hausdorff metric i such that

/ | Xn| dP < e for all n.
{XngA}
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THEOREM 3.2. Let {X,} be a sequence of independent random sets.
If {X,} is compactly uniformly integrable and

— 1
Zn_ [ Xn]|” < o0 for somel <1 <2,

then ]
lim h(— & Xl,— 69 co(EX;)) = 0 as.

n—oo n =1

Now we want to generalize the above SLLN for random sets to the case
of independent random fuzzy sets with respect to the metric do, defined
as in (2.4). In earlier works which include Hong and Kim [7], Inoue [§]
and Klement et al. [13], the metric d; defined as in (2.3) have been used.
SLLN with respect to the metric do, can be found in Molchanov [15],
Joo and Kim [11] and SLLN with respect to the metric ds in Joo [9].

A fuzzy set valued function X : Q — F(RP) is called measurable if
for each closed subset B of RP,

X1 (B)(w) = supX(w)(z)
z€B
is measurable when considered as a function from € to [0,1]. This
definition of measurability for a fuzzy set valued function was introduced
by Butnariu [4]. It turned out that X is measurable if and only if for
each a € [0,1], L, X is measurable as a set-valued function. A fuzzy set
valued function X : Q — F(RP) is called a random fuzzy set (or fuzzy
random variable ) if it is measurable. Recent work of Kim [12] shows
that a random fuzzy set can be identified with a random element of the
metric space F(RP) endowed with the metric d;.
A random fuzzy set X is called integrably bounded if E|X|| < oo.
The expectation of integrably bounded random fuzzy set X is a fuzzy
subset E(X) of R? defined by

E(X)(z) =sup{a €[0,1] : z € E(L,X)}.

It is well-known that if X and ¥ are integrably bounded random fuzzy
sets, then

(1) E(X) € F(RP), and LoE(X) = E(LoX) for all a € [0, 1].

(2) (X eY)=EX)o® E(Y)
(3) E

3) E(AX) = AE(X).
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We will also need the concepts of the convex hull of a fuzzy set in R?.
A fuzzy set 4 in RP is said to be convex if

(x4 (1 = N)y) > min(i(z), @(y))
for z,y € RP and X € [0,1]. The convex hull of & is defined by
co(@) = inf{¥|v is convex and ¥ > u}.
It follows from Lowen [14] that for all o € [0,1],
L, (co(@t)) = co(Lq ).

We denote by F(RP) the family of all & € F(RP) such that @ is
convex. Thus if & € F(RP), then co(@) € F(RP).

DEFINITION 3.3. Let X and ¥ be two random fuzzy sets. X and 1:/
are called level-wise identically distributed if for each a € [0,1], Lo X
and L,Y are identically distributed random sets.

The following theorem is a generalization of Joo and Kim [11].

THEOREM 3.4. Let {X,} be a sequence of independent and level-wise
identically distributed random fuzzy sets. If E||X1|| < oo, then .

1
lim doo(

n—oo ni

él X, co(EX1)) = 0 as.

Proof. Let S, = él)@; and let € > 0 be given. Then applying Lemma

22tou= co(EXl), there exists a partition 0 = ag < a3 < -+ < @, of
[0, 1] such that

(3.1) h(Laj_lco(EX'l),Laico(Ef(l)) <ei=12,...,7

If0 < a <1, then ap_; < a < ai for some k. Since L,S, C La;_lgn
and Lyco(EX1) D Ly, co(EX1), we have, by (3.1),

+ S’n, Lakco(EXl))

o

5(%La5‘n,Laco(E)~(1)) < 5(%L

k—1
< h(%La:_IS’n, Lo, co(EX1))
1

<h(=L +~1§n,La¢_ICO(EX1)) + €.
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Similarly, since Loco(EX;) C La:_lco(Ef(l) and L,S, D LakS'n, we
obtain
~ .1 ~ - 1 .
§(Laco(EXy), ;LaSn) < 5(La:_lco(EX1), ELakSn)
-1 .
< h(LaI_lco(EXl), T_LLak Sh)

| <
< MLg, co(EX1), —ﬁLakSn) +e.
Since Loco(EX,) = co(E(LaX,)) for each a € [0,1], we conclude that

1~ ~ 1 ~ -
doo(ESn,co E(X,)) < 1rélgécrh(ﬁLa;r_ISn,co(E(Lat_le)))

Since LS, = o Lo X; for each a € [0, 1], we obtain by Theorem 3.1,
i=1

lim dw(%gn,co(EX'l)) <€ as.

n—oo

This completes the proof. O

EXAMPLE. Let @ € F(RP) be fixed and let {Y,} be ii.d. RP-valued
random variables with E|Y;| < oo in the usual sense. We identify Y,
with the indicator function Iy, of Y,,. If we define X,, = 4 ® Y, then

Xn(“’)(x) = Gz — Yn(w))
i.e., X,(w) is the translation of & by Y, (w). Now for each a € [0,1],

LoXn(w) = Lo & {Y,(w)}.

Hence, E(LoX1) = Loi®{EY1} and so EX; = a®EY1, ie., (EX1)(z)
= u(x — EY1). By the above theorem, we have

X; Lo, co(EX;) as.

S|
s

i=1
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We note that co(EX;) = co(@) ® EY;. Furthermore, if @& € F(RP),
then

that is,

and co(EX'l) = EX; = 4 ® EY;. Thus, in this case,

o1 o -
u@(;ZYi)d—wLGBEYl a.s.

i=1

DEFINITION 3.5. Let {X,} be a sequence of random fuzzy sets.

(1) {X,} is said to be tight if for each € > 0 there exists a compact
subset A of F(RP) relative to ds-topology such that

P(X, ¢ A) < € for all n.

If A is compact relative to dso-topology, then {X,,} is said to be
strongly tight.

(2) {X,} is said to be compactly uniformly integrable if for each
€ > 0 there exists a compact subset A of F(RP) relative to d,-
topology such that

/~ ”Xn“ dP < € for all n.
{X.¢A}

If A is compact relative to deo-topology, then {X,,} is said to be
compactly uniformly integrable in the strong sense.

Now we wish to obtain SLLN for independent and strongly compactly
uniformly integrable random fuzzy sets. To this end, we need the fol-
lowing lemmas.

LEMMA 3.6. Let Fo(RP) be a separable subspace of F(RF) with re-
spect to the metric do,. If X is a Fo(RP)-valued random fuzzy set, then

X is a random element of the metric space Fo(RP) endowed the metric
doo-
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Proof. Let By, and B, be the Borel o-fields of Fy(RP) with respect
to the metric d, and d, respectively. Since ds-open sets are d.,-open
sets, it is clear that By C Bs. On the other hand, by Remark 1 of Kim
[12], every do.-open ball is Bs-measurable. Since Fo(RP) is separable
with respect to the metric d,, every d..-open subsets of Fy(RP) can
be represented by a countable union of d,-open balls of Fy(RP). Thus,
every deo-open subsets of Fo(RP) is B,-measurable, and so B; O By
This completes the proof. O

LEMMA 3.7. Let i, ..., 0 € F(RP). If||i:]| < M foralli =1,...,n,
then . "
doo(@l&i, @160(&” < VpM.

Proof. Since ||Loti|| < |la]] < M for all « € [0,1], we have by
Shapley-Folkman inequality,

W(La © @ La © cold))
= h( _élLaﬂi, EECO(Laﬂi))
<pPM for all o € [0,1].

This gives the desired result. ]

LeMMA 3.8. Let & € F(RP) and {\,} be a sequence of 0 and 1’s.
Then

n times
e e
(1) ds(ta®--- @@, co(i)) — 0 as n — oc.

(2) %doo(él/\i'&, 'é)\ico(ﬁ)) — 0 asn — o0.

Proof. (1) By Lemma 3.7, we have

n times
l —r—
doo(ﬁ U - Pa,co(l))
n times n times

1 - N — ~
=Edoo(ﬂ@ <D a,co(u) @ -+ B co(i))

1 _
<= vplill - o.
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(2) Let k,, be the number of {i|]\; = 1,1 <i < n}. If #2 - 0, then

1 n n
—doo( B Aill, B Aico(t
n (zial “ i-e_—al co(@))
k, times ky times
1 /. - 7 - PN
= Edoo(aea---eaa,co(a) ® - @ co(t))
k. . .
< —T—l—doo(u,co(u)) — 0.
If k,, — oo, then
Lo (& M, & hco(@))
n =1 =1
k, times ky, times
= (R TB R L @) & & co(D)
_nwknu u,kn U co(it
kn times
1 m"—
< d°°(k_ UP - Bu,co(lt)) — 0by (1)
This completes the proof. O

Now we state one of our main theorems which is a generalization of
Theorem 3.2.

THEOREM 3.9. Let {X,} be a sequence of independent random fuzzy
sets. If

(3.2) {X,} is compactly uniformly integrable in the strong sense,

and
[e%s) 1 _

(3.3) Z ;{;E”Xn“T < oo for some 1 <71 <2
n=1

then

1 n o~ n ~
lim Ed"o('@lXi’ .Galco(EXi)) = 0 a.s.

n—00
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Proof. The proof will be proceeded by similar arguments in Taylor
and Inoue [17], Uemura [18]. Let ¢ > 0 be given. By compactly uniform

integrability in the strong sense, there exists a compact subset K of
F(RP) relative to do-topology such that

(3.4) B %, ¢xyXnl < € for all n.

Since K is compact, there exist @y, ..., %, € K such that
m
K c | N(i,e),
k=1

where N (i, €) = {0 € F(RP) : doo (0, Ug) < €}. Note that N(ug,e€) € B,
by Remark 1 of Kim [12]. Now let us denote

Bl =N(ﬂ1,6),
Bk = N(ﬂk,e)\(U?;%N(ﬂj,e), k= 2’ ceey M,

and define
Then for each n,
Lio(& %, & co(EX))
—Ueco (2] (& 2
n i=1 i=1
1 n o~ n ~
1 n ~ n ~
(II) + Edoo(iflf{fciex}Xiv2.9:31[{)2,-61(} Y:)
1 n -~ n ~
(1) + - doo( @ Iiz.c k) Yi, ® Iix.ery co(i))
1 n ~ n -
Iv) + ﬁdm(ig (It x,exy CO(Yi),szl El 3. cxyco(Ys))
1 n - n -
(V) + ;doo (i§1El{X1‘€K} co(Yi),iE:Bl EI{CO(Xi)GK}CO(Xi))

1 n ~ n ~
(VI) + Edoo(iézBl EI{co(Xi)eK}CO(Xi)aiE{jl Eco(X;)).
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For (I), first we note that

1o . .
@< " Zdoo(Xi»I{XieK}Xi)

i=1

IN

1 & .
= Lo i X;
- ;:1 12, ¢ry Xill

1 . -
- Z;(||I{X,-¢K}Xi|| — Bl 2,01y X))

1& .
+o Y Bl gigry Xl
=1

IN

Since {||I;%, ¢ K}X;z” : n > 1} is a sequence of independent real-
valued random variables and

0 1 - .
; FE“I{XHQK}XHH <o

from (3.3), Chung’s strong law of large numbers and (3.4) imply that

lim sup (I)

n—od

n—oo

1o .
< lim sup - E E||I{)~<i¢K}Xi|| <e€as.
=1

For (II), note that for each X;(w) € K, there is a k such that X;(w) €
By and so 5
oo (Xi(w), Ur) < €.

Thus, by construction of Yn,

so that for all n,

1 . -
() < =3 dooTig,eny Xi Iig,emy Vi) < e
i=1
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For (III), it follows from Lemma 3.8(2) that

1 n m . nom ~
(I = ;L—doo (191 k€=91 I{?i:a’“} e iezal k6:91 I{?Fﬁ’“} col@r))

1 m n 5 n N
< - ;doo (iialj{f/i:ﬁk} Uk, iiall{{,i:ﬂk} co(t)) — 0 for all w.

Now for (IV), first we note that the space F'(RP) endowed the metric
deo can be embedded into a Banach space. Since {I %, xy co(Yi)} is
F (Rp)-valued~and the range of I ¢ co(Y;) is finite, by Lemma 3.7,
{1 %,exy co(Yi)} can be identified with random elements in a separable
Banach space. Since

~ ~. < 7
I %, ek CO(Yz)” S 1§mkagxm”00(uk)“ < 00,

we have by Theorem 2.3 of Daffer and Taylor [5],
(IV) = 0 as.

For (V), it follows from (3.5) that
1< - .
i=1
1 . .
<z Z Eldoo (It 3, ey Yir I %, e 103 Xi)]
i=1
< ¢ for all n.
Finally, for (VI), we have from (3,4),
1 « .
(VI) < E Z EIII{CO(XJ%K}CO(XZ)”
i=1
1 .
<= Bz g Xill <e
i=1
Therefore, we conclude that

1 n»n ~ 1 =n -
limsupdy (= & X, - @1 Eco(X;)) < 4e as.

n—oo n i=1

This completes the proof.
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COROLLARY 3.10. Let {X’n} be a sequence of independent random
fuzzy sets. If
(1) {X,} is strongly tight,
- (2) sup, E|| X,.||" = M < oo for some r > 1,

then 1
lim —doo( ® X;, ® co(EX;)) = 0 as.

n—oon i=1 =1

Proof. For each subset A of F(RP), we have

/~ | Xnll dP < (E|X,|I")" P[X, ¢ A/T-D/7
{X.¢A}
< MYTP[X, ¢ AT/,

For € > 0, by the strong tightness of {X,, }, if we choose a compact subset
A of F(RP) relative to do, such that

P[X, ¢ Al < e/ (r=1) pr—1/(r=1)

for all n, then
/~ [ X.|| dP < € for all n.
{XngA}

Therefore, condition(3.2) is satisfied. Condition (3.3) of Theorem 3.9 is
easily satisfied by (2). O

REMARK. It remains open problem whether SLLN with respect to the
metric ds hold if strong tightness and compactly uniform integrability
in the strong sense are replaced by tightness and compactly uniform
integrability, respectively. The difficulties arise from the fact that the
ds is not translation invariant and that the inequality ds(Ef( ,EY) <
E(d,(X,Y)) does not hold.
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