FUZZY r-REGULAR OPEN SETS AND FUZZY ALMOST r-CONTINUOUS MAPS

SEOK JONG LEE AND EUN PYO LEE

ABSTRACT. We introduce the concepts of fuzzy r-regular open sets and fuzzy almost r-continuous maps in the fuzzy topology of Chattopadhyay. Also we investigate the equivalent conditions of the fuzzy almost r-continuity.

1. Introduction

Chang [2] introduced fuzzy topological spaces and other authors continued the investigation of such spaces. Azad [1] introduced the concepts of fuzzy regular open set and fuzzy almost continuous maps in Chang's fuzzy topology. Chattopadhyay et al. [4] introduced another definition of fuzzy topology as a generalization of Chang's fuzzy topology. By generalizing the definitions of Azad, we introduce the concepts of fuzzy r-regular open sets and fuzzy almost r-continuous maps in the fuzzy topology of Chattopadhyay. Then the concepts introduced by Azad become special cases of our definition. Also we investigate the equivalent conditions of the fuzzy almost r-continuity.

2. Preliminaries

In this paper, we denote by I the unit interval [0,1] of the real line and $I_0=(0,1]$. A member μ of I^X is called a fuzzy set in X. For any $\mu\in I^X$, μ^c denotes the complement $1-\mu$. By $\tilde{0}$ and $\tilde{1}$ we denote constant maps on X with value 0 and 1, respectively. All other notations are standard notations of fuzzy set theory.

Received July 24, 2001.

²⁰⁰⁰ Mathematics Subject Classification: 54A40.

Key words and phrases: fuzzy r-regular open, fuzzy almost r-continuous.

This work was supported partly by the Basic Science Research Institute (BSRI-01-4) of Chungbuk National University.

A Chang's fuzzy topology on X is a family T of fuzzy sets in X which satisfies the following three properties:

- (1) $\tilde{0}, \tilde{1} \in T$.
- (2) If $\mu_1, \mu_2 \in T$ then $\mu_1 \wedge \mu_2 \in T$.
- (3) If $\mu_i \in T$ for each i, then $\bigvee \mu_i \in T$.

The pair (X,T) is called a Chang's fuzzy topological space.

A fuzzy topology on X is a map $\mathcal{T}:I^X\to I$ which satisfies the following properties:

- (1) $\mathcal{T}(\tilde{0}) = \mathcal{T}(\tilde{1}) = 1$,
- (2) $\mathcal{T}(\mu_1 \wedge \mu_2) \geq \mathcal{T}(\mu_1) \wedge \mathcal{T}(\mu_2)$,
- (3) $\mathcal{T}(\bigvee \mu_i) \geq \bigwedge \mathcal{T}(\mu_i)$.

The pair (X, \mathcal{T}) is called a fuzzy topological space.

For each $\alpha \in (0,1]$, a fuzzy point x_{α} in X is a fuzzy set in X defined by

$$x_{\alpha}(y) = \begin{cases} \alpha & \text{if } y = x, \\ 0 & \text{if } y \neq x. \end{cases}$$

In this case, x and α are called the *support* and the *value* of x_{α} , respectively. A fuzzy point x_{α} is said to *belong* to a fuzzy set μ in X, denoted by $x_{\alpha} \in \mu$, if $\alpha \leq \mu(x)$. A fuzzy point x_{α} in X is said to be *quasi-coincident* with μ , denoted by $x_{\alpha}q\mu$, if $\alpha + \mu(x) > 1$. A fuzzy set ρ in X is said to be *quasi-coincident* with a fuzzy set μ in X, denoted by $\rho q\mu$, if there is an $x \in X$ such that $\rho(x) + \mu(x) > 1$.

DEFINITION 2.1. ([5]) Let μ be a fuzzy set in a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then μ is called

- (1) a fuzzy r-open set in X if $\mathcal{T}(\mu) \geq r$,
- (2) a fuzzy r-closed set in X if $\mathcal{T}(\mu^c) \geq r$.

DEFINITION 2.2. ([3]) Let (X, \mathcal{T}) be a fuzzy topological space. For each $r \in I_0$ and for each $\mu \in I^X$, the fuzzy r-closure is defined by

$$\operatorname{cl}(\mu, r) = \bigwedge \{ \rho \in I^X : \mu \le \rho, \mathcal{T}(\rho^c) \ge r \}.$$

DEFINITION 2.3. ([5]) Let (X, T) be a fuzzy topological space. For each $r \in I_0$ and for each $\mu \in I^X$, the fuzzy r-interior is defined by

$$\operatorname{int}(\mu,r) = \bigvee \{\rho \in I^X : \mu \geq \rho, \mathcal{T}(\rho) \geq r\}.$$

THEOREM 2.4. ([5]) For a fuzzy set μ in a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$, we have:

- (1) $int(\mu, r)^c = cl(\mu^c, r)$.
- (2) $cl(\mu, r)^c = int(\mu^c, r)$.

DEFINITION 2.5. ([5]) Let μ be a fuzzy set in a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then μ is said to be

- (1) fuzzy r-semiopen if there is a fuzzy r-open set ρ in X such that $\rho \leq \mu \leq \operatorname{cl}(\rho, r)$,
- (2) fuzzy r-semiclosed if there is a fuzzy r-closed set ρ in X such that $\operatorname{int}(\rho, r) \leq \mu \leq \rho$.

DEFINITION 2.6. ([5]) Let x_{α} be a fuzzy point in a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then a fuzzy set μ in X is called

- (1) a fuzzy r-neighborhood of x_{α} if there is a fuzzy r-open set ρ in X such that $x_{\alpha} \in \rho \leq \mu$,
- (2) a fuzzy r-quasi-neighborhood of x_{α} if there is a fuzzy r-open set ρ in X such that $x_{\alpha}q\rho \leq \mu$.

DEFINITION 2.7. ([5]) Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a map from a fuzzy topological space X to another fuzzy topological space Y and $r\in I_0$. Then f is called

- (1) a fuzzy r-continuous map if $f^{-1}(\mu)$ is a fuzzy r-open set of X for each fuzzy r-open set μ in Y,
- (2) a fuzzy r-semicontinuous map if $f^{-1}(\mu)$ is a fuzzy r-semiopen set of X for each fuzzy r-open set μ in Y,
- (3) a fuzzy r-irresolute map if $f^{-1}(\mu)$ is a fuzzy r-semiopen set of X for each fuzzy r-semiopen set μ in Y.

All the other nonstandard definitions and notations can be found in [5] and [6].

3. Fuzzy r-regular open sets

We define the notions of fuzzy r-regular open sets and fuzzy r-regular closed sets, and investigate some of their properties.

DEFINITION 3.1. Let μ be a fuzzy set in a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then μ is said to be

- (1) fuzzy r-regular open if $int(cl(\mu, r), r) = \mu$,
- (2) fuzzy r-regular closed if $cl(int(\mu, r), r) = \mu$.

THEOREM 3.2. Let μ be a fuzzy set in a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then μ is fuzzy r-regular open if and only if μ^c is fuzzy r-regular closed.

Proof. It follows from Theorem 2.4.

REMARK 3.3. Clearly, every fuzzy r-regular open (r-regular closed) set is fuzzy r-open (r-closed). That the converse need not be true is shown by the following example. The example also shows that the union (intersection) of any two fuzzy r-regular open (r-regular closed) sets need not be fuzzy r-regular open (r-regular closed).

EXAMPLE 3.4. Let X=I and μ_1,μ_2 and μ_3 be fuzzy sets in X defined by

$$\mu_1(x) = \begin{cases} 0 & \text{if } 0 \le x \le \frac{1}{2}, \\ 2x - 1 & \text{if } \frac{1}{2} \le x \le 1; \end{cases}$$

$$\mu_2(x) = \begin{cases} 1 & \text{if } 0 \le x \le \frac{1}{4}, \\ -4x + 2 & \text{if } \frac{1}{4} \le x \le \frac{1}{2}, \\ 0 & \text{if } \frac{1}{2} \le x \le 1; \end{cases}$$

and

$$\mu_3(x) = \begin{cases} 0 & \text{if } 0 \le x \le \frac{1}{4}, \\ \frac{1}{3}(4x - 1) & \text{if } \frac{1}{4} \le x \le 1. \end{cases}$$

Define $\mathcal{T}: I^X \to I$ by

$$\mathcal{T}(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ \frac{1}{2} & \text{if } \mu = \mu_1, \mu_2, \mu_1 \vee \mu_2, \\ 0 & \text{otherwise.} \end{cases}$$

Then clearly \mathcal{T} is a fuzzy topology on X.

- (1) Clearly, $\mu_1 \vee \mu_2$ is fuzzy $\frac{1}{2}$ -open. Since $\operatorname{int}(\operatorname{cl}(\mu_1 \vee \mu_2, \frac{1}{2}), \frac{1}{2}) = \tilde{1} \neq \mu_1 \vee \mu_2$, $\mu_1 \vee \mu_2$ is not a fuzzy $\frac{1}{2}$ -regular open set.
- (2) Since $\operatorname{int}(\operatorname{cl}(\mu_1, \frac{1}{2}), \frac{1}{2}) = \operatorname{int}(\mu_2^c, \frac{1}{2}) = \mu_1$ and $\operatorname{int}(\operatorname{cl}(\mu_2, \frac{1}{2}), \frac{1}{2}) = \operatorname{int}(\mu_1^c, \frac{1}{2}) = \mu_2$, μ_1 and μ_2 are fuzzy $\frac{1}{2}$ -regular open sets. But $\mu_1 \vee \mu_2$ is not a fuzzy $\frac{1}{2}$ -regular open set.
- (3) In view of Theorem 3.2, μ_1^c and μ_2^c are fuzzy $\frac{1}{2}$ -regular closed sets but $\mu_1^c \wedge \mu_2^c = (\mu_1 \vee \mu_2)^c$ is not a fuzzy $\frac{1}{2}$ -regular closed set.

Theorem 3.5. (1) The intersection of two fuzzy r-regular open sets is fuzzy r-regular open.

(2) The union of two fuzzy r-regular closed sets is fuzzy r-regular closed.

Proof. (1) Let μ and ρ be any two fuzzy r-regular open sets in a fuzzy topological space X. Then μ and ρ are fuzzy r-open sets and hence $\mathcal{T}(\mu \wedge \rho) \geq \mathcal{T}(\mu) \wedge \mathcal{T}(\rho) \geq r$. Thus $\mu \wedge \rho$ is a fuzzy r-open set. Since $\mu \wedge \rho \leq \operatorname{cl}(\mu \wedge \rho, r)$,

$$\operatorname{int}(\operatorname{cl}(\mu \wedge \rho, r), r) \ge \operatorname{int}(\mu \wedge \rho, r) = \mu \wedge \rho.$$

Now, $\mu \wedge \rho \leq \mu$ and $\mu \wedge \rho \leq \rho$ implies

$$\operatorname{int}(\operatorname{cl}(\mu \wedge \rho, r), r) \leq \operatorname{int}(\operatorname{cl}(\mu, r), r) = \mu$$

and

$$\operatorname{int}(\operatorname{cl}(\mu \wedge \rho, r), r) \leq \operatorname{int}(\operatorname{cl}(\rho, r), r) = \rho.$$

Hence $\operatorname{int}(\operatorname{cl}(\mu \wedge \rho, r), r) \leq \mu \wedge \rho$. Therefore $\mu \wedge \rho$ is fuzzy r-regular open. (2) It follows from (1) and Theorem 3.2.

THEOREM 3.6. (1) The fuzzy r-closure of a fuzzy r-open set is fuzzy

r-regular closed. (2) The fuzzy r-interior of a fuzzy r-closed set is fuzzy r-regular open.

Proof. (1) Let μ be a fuzzy r-open set in a fuzzy topological space X. Then clearly $\operatorname{int}(\operatorname{cl}(\mu,r),r) \leq \operatorname{cl}(\mu,r)$ implies that

$$\operatorname{cl}(\operatorname{int}(\operatorname{cl}(\mu, r), r), r) \le \operatorname{cl}(\operatorname{cl}(\mu, r), r) = \operatorname{cl}(\mu, r).$$

Since μ is fuzzy r-open, $\mu = \operatorname{int}(\mu, r)$. Also since $\mu \leq \operatorname{cl}(\mu, r)$, $\mu = \operatorname{int}(\mu, r) \leq \operatorname{int}(\operatorname{cl}(\mu, r), r)$. Thus $\operatorname{cl}(\mu, r) \leq \operatorname{cl}(\operatorname{int}(\operatorname{cl}(\mu, r), r), r)$. Hence $\operatorname{cl}(\mu, r)$ is a fuzzy r-regular closed set.

(2) Similar to (1).
$$\Box$$

Let (X, \mathcal{T}) be a fuzzy topological space. For an r-cut $\mathcal{T}_r = \{\mu \in I^X \mid \mathcal{T}(\mu) \geq r\}$, it is obvious that (X, \mathcal{T}_r) is a Chang's fuzzy topological space for all $r \in I_0$.

Let (X,T) be a Chang's fuzzy topological space and $r \in I_0$. Recall [4] that a fuzzy topology $T^r: I^X \to I$ is defined by

$$T^{r}(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1}, \\ r & \text{if } \mu \in T - \{\tilde{0}, \tilde{1}\}, \\ 0 & \text{otherwise.} \end{cases}$$

THEOREM 3.7. Let μ be a fuzzy set in a fuzzy topological space (X, \mathcal{T}) and $r \in I_0$. Then μ is fuzzy r-regular open (r-regular closed) in (X, \mathcal{T}) if and only if μ is fuzzy regular open (regular closed) in (X, \mathcal{T}_r) .

Proof. Straightforward.

THEOREM 3.8. Let μ be a fuzzy set of a Chang's fuzzy topological space (X,T) and $r \in I_0$. Then μ is a fuzzy regular open (regular closed) in (X,T) if and only if μ is fuzzy r-regular open (r-regular closed) in (X,T^r) .

Proof. Straightforward.

4. Fuzzy almost r-continuous maps

We are going to introduce the notions of fuzzy almost r-continuous maps and investigate some of their properties. Also, we describe the relations among fuzzy almost r-continuous maps, fuzzy r-continuous maps and fuzzy r-semicontinuous maps.

DEFINITION 4.1. Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a map from a fuzzy topological space X to another fuzzy topological space Y and $r\in I_0$. Then f is called

- (1) a fuzzy almost r-continuous map if $f^{-1}(\mu)$ is a fuzzy r-open set of X for each fuzzy r-regular open set μ in Y, or equivalently, $f^{-1}(\mu)$ is a fuzzy r-closed set in X for each fuzzy r-regular closed set μ in Y,
- (2) a fuzzy almost r-open map if $f(\rho)$ is a fuzzy r-open set in Y for each fuzzy r-regular open set ρ in X,
- (3) a fuzzy almost r-closed map if $f(\rho)$ is a fuzzy r-closed set in Y for each fuzzy r-regular closed set ρ in X.

THEOREM 4.2. Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be a map and $r\in I_0$. Then the following statements are equivalent:

- (1) f is a fuzzy almost r-continuous map.
- (2) $f^{-1}(\mu) \leq \inf(f^{-1}(\operatorname{int}(\operatorname{cl}(\mu,r),r)),r)$ for each fuzzy r-open set μ in Y.
- (3) $\operatorname{cl}(f^{-1}(\operatorname{cl}(\operatorname{int}(\mu,r),r)),r) \leq f^{-1}(\mu)$ for each fuzzy r-closed set μ in Y.

Proof. (1) \Rightarrow (2) Let f be fuzzy almost r-continuous and μ any fuzzy r-open set in Y. Then

$$\mu = \operatorname{int}(\mu, r) \le \operatorname{int}(\operatorname{cl}(\mu, r), r).$$

By Theorem 3.6(2), $\operatorname{int}(\operatorname{cl}(\mu,r),r)$ is a fuzzy r-regular open set in Y. Since f is fuzzy almost r-continuous, $f^{-1}(\operatorname{int}(\operatorname{cl}(\mu,r),r))$ is a fuzzy r-open set in X. Hence

$$f^{-1}(\mu) \le f^{-1}(\operatorname{int}(\operatorname{cl}(\mu, r), r)) = \operatorname{int}(f^{-1}(\operatorname{int}(\operatorname{cl}(\mu, r), r)), r).$$

(2) \Rightarrow (3) Let μ be a fuzzy r-closed set of Y. Then μ^c is a fuzzy r-open set in Y. By (2),

$$f^{-1}(\mu^c) \le \inf(f^{-1}(\inf(\operatorname{cl}(\mu^c, r), r)), r).$$

Hence

$$f^{-1}(\mu) = f^{-1}(\mu^c)^c \ge \inf(f^{-1}(\inf(\operatorname{cl}(\mu^c, r), r)), r)^c$$
$$= \operatorname{cl}(f^{-1}(\operatorname{cl}(\inf(\mu, r), r)), r).$$

(3) \Rightarrow (1) Let μ be a fuzzy r-regular closed set in Y. Then μ is a fuzzy r-closed set in Y and hence

$$f^{-1}(\mu) \le \operatorname{int}(f^{-1}(\operatorname{int}(\operatorname{cl}(\mu, r), r)), r) = \operatorname{int}(f^{-1}(\mu), r).$$

Thus $f^{-1}(\mu) = \operatorname{cl}(f^{-1}(\mu), r)$ and hence $f^{-1}(\mu)$ is a fuzzy r-closed set in X. Therefore, f is a fuzzy almost r-continuous map. \square

THEOREM 4.3. Let $f:(X,T) \to (Y,\mathcal{U})$ be a map and $r \in I_0$. Then f is fuzzy almost r-open if and only if $f(\operatorname{int}(\rho,r)) \leq \operatorname{int}(f(\rho),r)$ for each fuzzy r-semiclosed set ρ in X.

Proof. Let f be fuzzy almost r-open and ρ a fuzzy r-semiclosed set in X. Then $\operatorname{int}(\rho,r) \leq \operatorname{int}(\operatorname{cl}(\rho,r),r) \leq \rho$. Note that $\operatorname{cl}(\rho,r)$ is a fuzzy r-closed set of X. By Theorem 3.6(2), $\operatorname{int}(\operatorname{cl}(\rho,r),r)$ is a fuzzy r-regular open set in X. Since f is fuzzy almost r-open, $f(\operatorname{int}(\operatorname{cl}(\rho,r),r))$ is a fuzzy r-open set in X. Thus we have

$$f(\operatorname{int}(\rho, r)) \le f(\operatorname{int}(\operatorname{cl}(\rho, r), r)) = \operatorname{int}(f(\operatorname{int}(\operatorname{cl}(\rho, r), r)), r) \le \operatorname{int}(f(\rho), r).$$

Conversely, let ρ be a fuzzy r-regular open set of X. Then ρ is fuzzy r-open and hence $\operatorname{int}(\rho,r)=\rho$. Since $\operatorname{int}(\operatorname{cl}(\rho,r),r)=\rho$, ρ is fuzzy r-semiclosed. So

$$f(\rho) = f(\operatorname{int}(\rho, r)) \le \operatorname{int}(f(\rho), r) \le f(\rho).$$

Thus $f(\rho) = \operatorname{int}(f(\rho), r)$ and hence $f(\rho)$ is a fuzzy r-open set in Y. \square

The global property of fuzzy almost r-continuity can be rephrased to the local property in terms of neighborhood and quasi-neighborhood, respectively, in the following two theorems.

THEOREM 4.4. Let $f:(X,T) \to (Y,\mathcal{U})$ be a map and $r \in I_0$. Then f is fuzzy almost r-continuous if and only if for every fuzzy point x_{α} in X and every fuzzy r-neighborhood μ of $f(x_{\alpha})$, there is a fuzzy r-neighborhood ρ of x_{α} such that $x_{\alpha} \in \rho$ and $f(\rho) \leq \operatorname{int}(\operatorname{cl}(\mu, r), r)$.

Proof. Let x_{α} be a fuzzy point in X and μ a fuzzy r-neighborhood of $f(x_{\alpha})$. Then there is a fuzzy r-open set λ in Y such that $f(x_{\alpha}) \in \lambda \leq \mu$. So $x_{\alpha} \in f^{-1}(\lambda) \leq f^{-1}(\mu)$. Since f is fuzzy almost r-continuous,

$$f^{-1}(\lambda) \le \operatorname{int}(f^{-1}(\operatorname{int}(\operatorname{cl}(\lambda, r)), r) \le \operatorname{int}(f^{-1}(\operatorname{int}(\operatorname{cl}(\mu, r)), r).$$

Put $\rho = f^{-1}(\operatorname{int}(\operatorname{cl}(\mu, r), r))$. Then $x_{\alpha} \in f^{-1}(\lambda) \leq \operatorname{int}(\rho, r) \leq \rho$. By Theorem 3.6(2), $\operatorname{int}(\operatorname{cl}(\mu, r), r)$ is fuzzy r-regular open. Since f is fuzzy almost r-continuous, $\rho = f^{-1}(\operatorname{int}(\operatorname{cl}(\mu, r), r))$ is fuzzy r-open. Thus ρ is a fuzzy r-neighborhood of x_{α} and

$$f(\rho) = ff^{-1}(\operatorname{int}(\operatorname{cl}(\mu,r),r)) \leq \operatorname{int}(\operatorname{cl}(\mu,r),r).$$

Conversely, let μ be a fuzzy r-regular open set in Y and $x_{\alpha} \in f^{-1}(\mu)$. Then μ is fuzzy r-open and hence μ is a fuzzy r-neighborhood of $f(x_{\alpha})$. By hypothesis, there is a fuzzy r-neighborhood $\rho_{x_{\alpha}}$ of x_{α} such that $x_{\alpha} \in \rho_{x_{\alpha}}$ and $f(\rho_{x_{\alpha}}) \leq \operatorname{int}(\operatorname{cl}(\mu, r), r) = \mu$. Since $\rho_{x_{\alpha}}$ is a fuzzy r-neighborhood of x_{α} , there is a fuzzy r-open set $\lambda_{x_{\alpha}}$ in X such that

$$x_{\alpha} \in \lambda_{x_{\alpha}} \le \rho_{x_{\alpha}} \le f^{-1}f(\rho_{x_{\alpha}}) \le f^{-1}(\mu).$$

So we have

$$f^{-1}(\mu) = \bigvee \{x_{\alpha} : x_{\alpha} \in f^{-1}(\mu)\}$$

$$\leq \bigvee \{\lambda_{x_{\alpha}} : x_{\alpha} \in f^{-1}(\mu)\}$$

$$\leq f^{-1}(\mu).$$

Thus $f^{-1}(\mu) = \bigvee \{\lambda_{x_{\alpha}} : x_{\alpha} \in f^{-1}(\mu)\}$ is fuzzy r-open in X and hence f is almost r-continuous.

THEOREM 4.5. Let $f:(X,\mathcal{T}) \to (Y,\mathcal{U})$ be a map and $r \in I_0$. Then f is a fuzzy almost r-continuous map if and only if for every fuzzy point x_{α} in X and every fuzzy r-quasi-neighborhood ρ of f such that f and f and f continuous map if and f and f continuous f continuous f and f continuous f conti

Proof. Let x_{α} be a fuzzy point in X and μ a fuzzy r-quasi-neighborhood of $f(x_{\alpha})$. Then there is a fuzzy r-open set λ in Y such that $f(x_{\alpha})q\lambda \leq \mu$. So $x_{\alpha}qf^{-1}(\lambda)$. Since f is fuzzy almost r-continuous,

$$f^{-1}(\lambda) \le \inf(f^{-1}(\operatorname{int}(\operatorname{cl}(\lambda, r)), r) \le \operatorname{int}(f^{-1}(\operatorname{int}(\operatorname{cl}(\mu, r)), r).$$

Put $\rho = f^{-1}(\operatorname{int}(\operatorname{cl}(\mu, r), r))$. Then $x_{\alpha} \operatorname{q} f^{-1}(\lambda) \leq \operatorname{int}(\rho, r) \leq \rho$. So $x_{\alpha} \operatorname{q} \rho$. Since $\operatorname{int}(\operatorname{cl}(\mu, r), r)$ is fuzzy r-regular open and f is fuzzy almost r-continuous, $\rho = f^{-1}(\operatorname{int}(\operatorname{cl}(\mu, r), r))$ is fuzzy r-open. Thus ρ is a fuzzy r-quasi-neighborhood of x_{α} and

$$f(\rho) = ff^{-1}(\operatorname{int}(\operatorname{cl}(\mu, r), r)) \le \operatorname{int}(\operatorname{cl}(\mu, r), r).$$

Conversely, let μ be a fuzzy r-regular open set in Y. If $f^{-1}(\mu) = \tilde{0}$, then it is obvious. Suppose x_{α} is a fuzzy point in $f^{-1}(\mu)$ such that $\alpha < f^{-1}(\mu)(x)$. Then $\alpha < \mu(f(x))$ and hence $f(x)_{1-\alpha}q\mu$. So μ is a fuzzy r-quasi-neighborhood of $f(x)_{1-\alpha} = f(x_{1-\alpha})$. By hypothesis, there is a fuzzy r-quasi-neighborhood $\rho_{x_{\alpha}}$ of $x_{1-\alpha}$ such that $x_{1-\alpha}q\rho_{x_{\alpha}}$ and $f(\rho_{x_{\alpha}}) \leq \operatorname{int}(\operatorname{cl}(\mu,r),r) = \mu$. Since $\rho_{x_{\alpha}}$ is a fuzzy r-quasi-neighborhood of $x_{1-\alpha}$, there is a fuzzy r-open set $\lambda_{x_{\alpha}}$ in X such that

$$x_{1-\alpha} q \lambda_{x_{\alpha}} \le \rho_{x_{\alpha}} \le f^{-1} f(\rho_{x_{\alpha}}) \le f^{-1}(\mu).$$

Then $\alpha < \lambda_{x_{\alpha}}(x)$ and hence $x_{\alpha} \in \lambda_{x_{\alpha}}$. So

$$f^{-1}(\mu) = \bigvee \{x_{\alpha} : x_{\alpha} \text{ is a fuzzy point in } f^{-1}(\mu) \text{ such that}$$

$$\alpha < f^{-1}(\mu)(x)\}$$

$$\leq \bigvee \{\lambda_{x_{\alpha}} : x_{\alpha} \text{ is a fuzzy point in } f^{-1}(\mu) \text{ such that}$$

$$\alpha < f^{-1}(\mu)(x)\}$$

$$\leq f^{-1}(\mu)$$

and hence

$$f^{-1}(\mu) = \bigvee \{\lambda_{x_{\alpha}} : x_{\alpha} \text{ is a fuzzy point in } f^{-1}(\mu) \text{ such that}$$

$$\alpha < f^{-1}(\mu)(x)\}.$$

Thus $f^{-1}(\mu)$ is fuzzy r-open in X. Therefore f is fuzzy almost r-continuous.

THEOREM 4.6. Let $f:(X,\mathcal{T})\to (Y,\mathcal{U})$ be fuzzy r-semicontinuous and fuzzy almost r-open. Then f is fuzzy r-irresolute.

Proof. Let μ be fuzzy r-semiclosed in Y. Then $\operatorname{int}(\operatorname{cl}(\mu, r), r) \leq \mu$. Since f is fuzzy r-semicontinuous,

$$int(cl(f^{-1}(\mu), r), r) \le f^{-1}(cl(\mu, r)).$$

Thus we have

$$\operatorname{int}(\operatorname{cl}(f^{-1}(\mu), r), r) = \operatorname{int}(\operatorname{int}(\operatorname{cl}(f^{-1}(\mu), r), r), r) \le \operatorname{int}(f^{-1}(\operatorname{cl}(\mu, r)), r).$$

Since f is fuzzy r-semicontinuous and $\operatorname{cl}(\mu,r)$ is fuzzy r-closed, $f^{-1}(\operatorname{cl}(\mu,r))$ is a fuzzy r-semiclosed set in X. Since f is fuzzy almost r-open,

$$f(\operatorname{int}(f^{-1}(\operatorname{cl}(\mu,r)),r) \le \operatorname{int}(ff^{-1}(\operatorname{cl}(\mu,r)),r) \le \operatorname{int}(\operatorname{cl}(\mu,r),r) \le \mu.$$

Hence we have

$$\begin{split} & \mathrm{int}(\mathrm{cl}(f^{-1}(\mu),r),r) \leq f^{-1} f(\mathrm{int}(\mathrm{cl}(f^{-1}(\mu),r),r) \\ & \leq f^{-1} f(\mathrm{int}(f^{-1}(\mathrm{cl}(\mu,r)),r)) \\ & \leq f^{-1}(\mu). \end{split}$$

Thus $f^{-1}(\mu)$ is fuzzy r-semiclosed in X and hence f is fuzzy r-irresolute. \Box

REMARK 4.7. Clearly a fuzzy r-continuous map is a fuzzy almost r-continuous map. That the converse need not be true is shown by the following example. Also, the example shows that a fuzzy almost r-continuous map need not be a fuzzy r-semicontinuous map.

EXAMPLE 4.8. Let X=I and μ_1,μ_2 and μ_3 be fuzzy sets in X defined by

$$\mu_1(x) = x;$$
 $\mu_2(x) = 1 - x;$

and

$$\mu_3(x) = \begin{cases} x & \text{if } 0 \le x \le \frac{1}{2}, \\ 0 & \text{if } \frac{1}{2} \le x \le 1. \end{cases}$$

Define $\mathcal{T}_1:I^X\to I$ and $\mathcal{T}_2:I^X\to I$ by

$$\mathcal{T}_{1}(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1} \\ \frac{1}{2} & \text{if } \mu = \mu_{1}, \mu_{2}, \mu_{1} \vee \mu_{2}, \mu_{1} \wedge \mu_{2} \\ 0 & \text{otherwise,} \end{cases}$$

and

$$\mathcal{T}_{2}(\mu) = \begin{cases} 1 & \text{if } \mu = \tilde{0}, \tilde{1} \\ \frac{1}{2} & \text{if } \mu = \mu_{1}, \mu_{2}, \mu_{3}, \mu_{1} \vee \mu_{2}, \mu_{1} \wedge \mu_{2} \\ 0 & \text{otherwise.} \end{cases}$$

Then clearly $\mathcal{T}_1, \mathcal{T}_2$ are fuzzy topologies on X. Consider the identity map $1_X: (X, \mathcal{T}_1) \to (X, \mathcal{T}_2)$. It is clear that $\mu_1, \mu_2, \mu_1 \vee \mu_2$ and $\mu_1 \wedge \mu_2$ are fuzzy $\frac{1}{2}$ -regular open in (X, \mathcal{T}_2) while μ_3 is not. Noting that $\mathcal{T}_1(\mu_3) = 0$, it is obvious that 1_X is a fuzzy $\frac{1}{2}$ -almost continuous map which is not a fuzzy $\frac{1}{2}$ -continuous map. Also, because $\tilde{0}$ is the only fuzzy $\frac{1}{2}$ -open set contained in $\mu_3, \mu_3 = 1_X^{-1}(\mu_3)$ is not a fuzzy $\frac{1}{2}$ -semiopen set in (X, \mathcal{T}_1) and hence 1_X is not a fuzzy $\frac{1}{2}$ -semicontinuous map.

Example 4.9. A fuzzy r-semicontinuous map need not be a fuzzy almost r-continuous map.

Let (X, \mathcal{T}) be a fuzzy topological space as described in Example 3.4 and let $f: (X, \mathcal{T}) \to (X, \mathcal{T})$ be defined by $f(x) = \frac{x}{2}$. Simple computations give $f^{-1}(\tilde{0}) = \tilde{0}$, $f^{-1}(\tilde{1}) = \tilde{1}$, $f^{-1}(\mu_1) = \tilde{0}$ and $f^{-1}(\mu_2) = \mu_1^c = f^{-1}(\mu_1 \vee \mu_2)$. Since $\operatorname{cl}(\mu_2, \frac{1}{2}) = \mu_1^c$, μ_1^c is a fuzzy $\frac{1}{2}$ -semiopen set and hence f is a fuzzy $\frac{1}{2}$ -semicontinuous map. But $f^{-1}(\mu_2) = \mu_1^c$ and

$$\inf(f^{-1}(\inf(\operatorname{cl}(\mu_2, \frac{1}{2}), \frac{1}{2})), \frac{1}{2}) = \inf(f^{-1}(\inf(\mu_1^c, \frac{1}{2})), \frac{1}{2})
= \inf(f^{-1}(\mu_2), \frac{1}{2})
= \inf(\mu_1^c, \frac{1}{2}) = \mu_2.$$

Thus $f^{-1}(\mu_2) \not\leq \operatorname{int}(f^{-1}(\operatorname{int}(\operatorname{cl}(\mu_2,\frac{1}{2}),\frac{1}{2})),\frac{1}{2})$ and hence f is not a fuzzy almost $\frac{1}{2}$ -continuous map.

From Example 4.8 and 4.9 we have the following result.

THEOREM 4.10. Fuzzy r-semicontinuity and fuzzy almost r-continuity are independent notions.

DEFINITION 4.11. Let (X, \mathcal{T}) be a fuzzy topological space and $r \in I_0$. Then (X, \mathcal{T}) is called a fuzzy r-semiregular space if each fuzzy r-open set in X is a union of fuzzy r-regular open sets.

THEOREM 4.12. Let $r \in I_0$ and $f: (X, \mathcal{T}) \to (Y, \mathcal{U})$ be a map from a fuzzy topological space X to a fuzzy r-semiregular space Y. Then f is fuzzy almost r-continuous if and only if f is fuzzy r-continuous.

Proof. Due to Remark 4.7, it suffices to show that if f is fuzzy almost r-continuous then it is fuzzy r-continuous. Let μ be a fuzzy r-open set in Y. Since (Y, \mathcal{U}) is a r-semiregular space, $\mu = \bigvee \mu_i$, where μ_i 's are fuzzy r-regular open sets in Y. Then since f is a fuzzy almost r-continuous map, $f^{-1}(\mu_i)$ is a fuzzy r-open set for each i. So

$$\mathcal{T}(f^{-1}(\mu)) = \mathcal{T}(f^{-1}(\bigvee \mu_i)) = \mathcal{T}(\bigvee f^{-1}(\mu_i)) \ge \bigwedge \mathcal{T}(f^{-1}(\mu_i)) \ge r.$$

Thus $f^{-1}(\mu)$ is fuzzy r-open in X and hence f is a fuzzy r-continuous map.

THEOREM 4.13. Let $f:(X,T) \to (Y,\mathcal{U})$ be a map from a fuzzy topological space X to another fuzzy topological space Y and $r \in I_0$. Then f is fuzzy almost r-continuous (r-open, r-closed) if and only if $f:(X,\mathcal{T}_r) \to (Y,\mathcal{U}_r)$ is fuzzy almost continuous (open, closed).

Proof. Straightforward. \Box

THEOREM 4.14. Let $f:(X,T) \to (Y,U)$ be a map from a Chang's fuzzy topological space X to another Chang's fuzzy topological space Y and $r \in I_0$. Then f is fuzzy almost continuous (open, closed) if and only if $f:(X,T^r) \to (Y,U^r)$ is fuzzy almost r-continuous (r-open, r-closed).

Proof. Straightforward.

References

^[1] K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981), 14-32.

^[2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182–190.

^[3] K. C. Chattopadhyay and S. K. Samanta, Fuzzy topology: Fuzzy closure operator, fuzzy compactness and fuzzy connectedness, Fuzzy Sets and Systems 54 (1993), 207–212.

- [4] K. C. Chattopadhyay, R. N. Hazra and S. K. Samanta, *Gradation of openness: fuzzy topology*, Fuzzy Sets and Systems **49** (1992), 237–242.
- [5] Seok Jong Lee and Eun Pyo Lee, Fuzzy r-preopen sets and fuzzy r-precontinuous maps, Bull. Korean Math. Soc. 36 (1999), 91-108.
- [6] ______, Fuzzy r-continuous and fuzzy r-semicontinuous maps, Int. J. Math. and Math. Sci. 27 (2001), 53–63.

SEOK JONG LEE, DEPARTMENT OF MATHEMATICS, CHUNGBUK NATIONAL UNIVERSITY, CHEONGJU 361-763, KOREA

 $\textit{E-mail} \colon \texttt{sjlee@cbnu.ac.kr}$

EUN PYO LEE, DEPARTMENT OF MATHEMATICS, SEONAM UNIVERSITY, NAMWON 590-711, KOREA

E-mail: eplee@tiger.seonam.ac.kr