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ABSTRACT

Most statistical designs, such as orthogonal designs and optimal designs,
are based on a specific statistical model. It is very often that the experi-
menter does not completely know the underlying model between the response
and the factors. In computer experiments, the underlying model is known,
but too complicated. In this case we can treat the model as a black box,
or model to be unknown. Both cases need a space filling design. The uni-
form design is one of space filling designs and seeks experimental points to
be uniformly scattered on the domain. The uniform design can be used
for computer experiments and also for industrial experiments when the un-
derlying model is unknown. In this paper we shall introduce the theory
and method of the uniform design and related data analysis and modelling
methods. Applications of the uniform design to industry and other areas
are discussed.

Keywords. Computer experiments, experiment with mixtures, factorial design,
uniform design.
AMS 2000 subject classifications. Primary 93B52; Secondary 62K15.

tPortions of this work were presented in the Ilsong Invited Lecture given at the 2002 Spring
Conference of the Korean Statistical Society in Taejon, Korea. The author would like to thank

the invitation and financial support from the Korean Statistical Society.
!Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong,
China (email : ktfang@hkbu.edu.hk)



278 Kai-Tai Fang

1. Introduction

Statistical experimental design has a long history and is a powerful tool in
various fields. Most experimental design methods concern with randomness, bal-
ance, orthogonality, efficiency, and robustness under a specific statistical model.
For example, the factorial design is based on a ANOVA model and the optimal
design is based on a regression model with some unknown parameters.

Example 1. In a biological experiment we wish to explore the relationship
between the growth time (z) and the response (y). The underlying model

y=y(z)=1-¢2" z€l02, (1.1)

is unknown. Figure 1 gives a plot of the growth curve. There are many ways to
design this experiment based on different statistical models. The followings are
some of them.

A. ANOVA Models

The experimenter observes the response at several growth times, z1,--- , x4,
that are called levels. For each z; we repeat experiment n; times and related
responses are yij, '+ ,¥n;;- A statistical model

Yij = i T €5, =1 ,¢0i=1--,ny, (1.2)

where p; is the true value y(z;) and ¢;; are random errors that are independently
identically distributed according to N(0,02). Let u be the overall mean of y over
Zi, -+ ,Zq. Then the mean p; can be decomposed into p; = a; + u, where o; is
called the main effect of y at z; and they satisfy a; +--- + a4 = 0.

Under model (1.2) we need to find a design under which we can efficiently

estimate {1, -+ , g} or {, a1, -+ ,a,} and o2, and to assess whether y(z) sig-
nificantly depends on z = z1,--- ,z4. The so-called factorial designs can reach
this task.

B. Linear regression models
From the professional knowledge the experimenter wants to use a linear model
to fit relationship between z and y

y(z) = Pufi(z) + - + Bfm(z) +¢, z€T, (1.3)

where 7 is the experimental domain, functions fi,--- , fi, are known and 3y, - - -,
Bm are unknown. We want to design an experiment with a fixed number of runs
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FIGRURE 1 Weibull growth curve model FIGURE 2 Factorial design
such that we can obtain the best estimators of 8y, -+ , 8, and 2. The so-called

optimal design is from this idea. There are several criteria, such as D-optimality,
A-optimality, F-optimality, etc. in theory of optimal designs. See Atkinson and
Donev (1992) and Pulkelsheim (1993) for the details. When model (1.3) is

y(z) = o + Prz + Poz® + ¢, (1.4)

the corresponding D-optimal design is presented in Figure 3, where the dash line
is the fitting curve. We can see that the fitting is not well, as model (1.4) is
wrong. So the optimal design does not have robustness against model changes.

C. Nonparametric regression models
When the experimenter do not have any prior knowledge about the underlying
model, a nonparametric regression model

y=g(z)+e xeT (1.5)

where function g is unknown, can be employed. We want to estimate y(z) at
each z. Many smooth techniques, such as polynomial regression model, kernel
estimator, local polynomial fitting, wavelets, spline, etc. can be used to estimate
the function g. Under model (1.5) the uniform design is recommended. A uniform
design with 12 runs is shown in Figure 4, where the dash line is the fitting curve
by a polynomial regression model.

D. Robust regression models
If the experimenter knows the underlying model to be close to a linear model,
a robust regression model is

y(@) = pifi(x) + -+ + Bnfm(z) + h(z) + ¢, xeT (1.6)
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FiGURE 3 Optimal design FI1GURE 4 Uniform design

where h(z) denotes the departure of the model (1.5) from the true model. When
function h belongs to some class of functions, we wish to find a design such that
we can obtain the best estimators for 8;,--- , 8, under a certain sense. It has
shown that the uniform design is a robust design against model changes.

Multi-factor experiments, especially in high-tech development, have the fol-
lowing complexities: (a) many factors; (b) large experimental region; (c) com-
plicated non-linear model; and (d) model unknown. Due to these complexities
one needs some new experimental designs. The space filling design is a good
alternative choice, especially when the underlying model is unknown.

Design of computer experiments is a rapidly growing area and is particularly
useful in the system engineering. It has been paid much attention in the past two
decades. Suppose that we have a device/process in a system engineering or in
a financial system. The behavior of the device/process depends on a number of
input variables z,--- ,z,. Based on the professional knowledge we can calculate
the responses from the input variables by

Y :g(mla"' 73:8), X = (mla"' 11"8) € T? (17)

where 7 is the input space. Due to complexity and nonlinearity of the de-
vice/process the function g has no analytic formula. One wishes to find an ap-
proximate model y = §(z1,--- ,zs) that is much simpler than the true one based
on a set of design points and their responses (cf. Figure 5).

If one can find such an approximation model g, there are many goals that
may be requested from the practice. For example,

(a) Visualization

The model g can serve as a primitive way to visualize the true model g. For
example, plots of y against each factor, contour plots of y against each pair of
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the factors, etc.

(b) Optimization

The experimenter can estimate the minimum/maximum value of the response
y and the related minimum/maximum point. The solution can be approximately
found by finding a point x* = (z7,--- ,z}) € T such that

g(.’L‘T, 7‘7":) :;Iél%_lg(zlﬁ ,il?s),

if one wishes to find the minimum value of y. The above optimization can be
implemented under some constrains. This kind of optimization is often impossible
by the use of response surface.

(c) Estimation

When the overall mean of y over the region 7 is the interest, the true value
of the overall mean is given by the integration

E@IT) = [r o(%)dx

that can be approximated (estimated) by

Ig|T) = /T §(x)dx.

In fact, one can estimate many other interesting parameters through the approx-
imation model.

Now, we face Design and Modeling problems:

(i) Construction of uniform designs: How do we choose a set of exper-
imental points, P = {x1,--- ,Xp}, on the region 7 such that these points are
uniformly scattered on the region 7. We need a measure of uniformity and a
powerful algorithm for searching uniform designs.
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(ii) Modelling: How do we find a good approximation model §. It needs
many techniques in statistical modeling and in curves and surfaces for computer-
aided design in engineering (CAD/CAM techniques) (Frarin, 1993).

A comprehensive review on the space filling design can refer to Bates et al.
(1996) and Koehler and Owen (1996). The uniform design (UD) is one of space
filling designs and it seeks experimental points to be uniformly scattered on the
domain. The UD was proposed by Fang and Wang (Fang, 1980; Wang and Fang,
1981) and has been popularly used since 1980. A comprehensive studies on the
uniform design can refer to Fang and Wang (1994), Fang and Hickernell (1995),
Fang et al. (2000), and Fang and Lin (2002). The UD has several advantages. For
example, it can explore relationships between the response and the factors with a
reasonable number of runs and is robust to the underlying model specifications.
For practical ease, most uniform designs have been constructed and tabulated for
the practitioners.

2. Uniform Designs in Computer and Industrial Experiments

The uniform design for multi-factor experiments can be tabulated. For an
experiment of n runs and s factors on the experimental region 7, a uniform
design for this experiment is to put n points uniformly scattered on 7. Very
often the experimental region is a rectangle [a,b] = [a1,b1] X -+ X [as, bs]. For
the jth factor, suppose one chooses g equi-distance points (we might call then
as levels), denoted by z;1, - ,%jq, ¢ < n and q is a divisor of n. There are ¢°
level-combinations. By a linear transformation, these ¢ levels becomes 1,--- , g,
called as canonical levels. A uniform design is used for choosing a subset of n
points from these ¢° level-combinations.

Definition 2.1. A matriz of n X s is called a U-type design of U(n;q®) if each
column of the matriz has 1,2,--- ,q as its elements and these elements appear
equally often.

Definition 2.2. A uniform design table U,(q¢*) (UD table for short) is a U-type
design U(n;q°) and has the best uniformity (in terms of choice of measure of
uniformity) among all such U(n;q®) designs.

Therefore, ¢ must be a divisor of n. In Section 4 we shall introduce measures
of uniformity and the construction of uniform designs. Table 1 gives a UD table
U12(12%) that can help us to choose 12 runs from 12 level-combinations if &
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in the jth column of the table U,(¢®) corresponds to z;x for j = 1,--- ,s,k =
1,--- ,n. Many uniform design tables can be downloaded from world web site at
http://www.math.hkbu.edu.edu.hk/UniformDeisgn (UD-web site for short) .

TABLE 1 UD table U12(12*)

No.| 1 2 3 4
1 1 10 4 7
2 2 5 11 3
3 3 1 7 9
4 4 6 1 )
5 5 11 10 11
6 6 9 8 1
7 7 4 5 12
8 8 2 3 2
9 9 7 12 8
10 (10 12 6 4
11 |11 8 2 10
12 112 3 9 6

Example 2. A chemical experiment is conducted in order to find the best
setup to increase the yield. The following subsections illustrate the procedure of
implementing uniform design, step by step.

2.1. Choose factors and their levels

Four factors, the amount of formaldehyde (z,), the reaction temperature (z2),
the reaction time (z3), and the amount of potassium carbolic acid (z4) are under
the consideration. The response variable is designated as the yield (y). The
experimental domain is chosen to be 7 = [1.0,5.4] x [5,60] x [1.0,6.5] x [15, 70]
and each factor takes 12 levels as follows:

The amount of formaldehyde (mol/mol): 1.0, 1.4, 1.8, 2.2,
2.6, 3.0, 3.4, 3.8, 4.2, 4.6, 5.0, 5.4

The reaction temperature (hour): 5, 10, 15, 20, 25, 30, 35,
40, 45, 50, 55, 60

The reaction time (hour): 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0,
4.5, 5.0, 5.5, 6.0, 6.5

The amount of potassium carbolic
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acid (ml): 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65

The four factors in this example are quantitative. In fact, factors in industrial
experiments can be quantitative or qualitative. The uniform design can deal with
categorical factors as well.

2.2. Design and run experiments

This experiment could be arranged with a UD table of the form U, (12%),
where 12 is a divisor of n. It turns out that the experimenter chooses Uso(12%)
design in Table 1. The 12 levels marked by 1,2,...,12 are transformed into the
real levels of the factors. It results in a design listed in Table 2. Specifically, the
heading of (1, 2, 3, 4) in Table 2 represents the uniform design table for four
factors in twelve runs. The heading of (z;,z2,z3,z4) in Table 2 represents the
actual experimental values for these four factors. Randomize the order of these
12 level-combinations, implement the experiments, and record the corresponding
yield y (see the last column of Table 2).

TaBLE 2 U12(12%) and related design

No. 1 2 3 4 T T2 I3 Trq y
1 1 10 7 110 50 25 45} 0.0795
2 2 5 11 3 (14 25 6.0 25 0.0118
3 3 1 7 9 {18 5 40 55| 0.0109
4 4 6 1 5122 30 1.0 35| 0.0991
5 5 11 10 11 [ 26 55 5.5 65| 0.1266
6 6 9 8 1 130 45 45 15| 0.0717
7 7T 4 5 12134 20 30 70| 0.1319
8 8 2 3 2 138 10 20 20| 0.0900
9 9 7 12 8 |42 35 65 50| 0.1739
10 10 12 6 4 |46 60 35 30| 0.1176
11 |11 8 2 10150 40 15 60| 0.1836
12 (12 3 9 6 | 54 15 5.0 40 | 0.1424

2.3. Modelling

The major goal of the data analysis is to establish a suitable approximate
model to the true one. We have mentioned that there are many ways to search
a such model. In this example, we consider only linear and quadratic regression
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models.

Note that the goal of the experiment is to find the best level-combination of
the factors that can maximize the yield. The best result among the 12 responses is
y1 = 18.36% at z; = 5.0,z2 = 40, z3 = 1.5 and z4 = 60. This can be served as a
benchmark. We wish to know whether there is any level-combination to produce
a better yield. The simplest approximate model is the first-order regression:

E(y) = Bo + Brz1 + Paza + B3T3 + Bazs.
Based on the data in Table 2, we get model
9 = —0.0533 + 0.0281z; + 0.0010z2 — 0.0035z3 + 0.0011z4.

In the ANOVA table, the model involves an insignificant term ‘z3’ with p-value
0.4962. We have to remove this term from the model. By the backward elimina-
tion techniques in regression analysis, the resulting model turns out to be

7 = 0.0107 4 0.0289z

with R? = 57.68% and s? = 0.0014. This model is not consistent with experience
of the experimenter as there are three factors not to be involved in the model.
Therefore, a more flexible second-order quadratic regression is considered,

4
E(y) =Bo+Y_Bimi+ Y BiTi%;.

i=1 i<y
With MAXR, a technique of selection of variables, we find

§ = 0.0446+0.0029z5 —0.0260z3 +0.0071z,z3
+ 0.000036x2z4 —0.00005422 (2.1)

with R? = 97.43% and s? = 0.0001. Statistical diagnostics based on the residual
and normal plots indicate that the model (2.1) is acceptable.

In the literature, the centered second-order centered quadratic regression
model

4
E(y)=fo+ Z Bimi — Z:) + Y _ Bij(zi — Ti) (x5 — )

1<)
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is recommended, where Z; is the sample mean of z;. In this data set, Z; =
3.2, To = 32.5, T3 = 3.75 and 7, = 42.5. Once again, by using model selection
techniques, the final model is

§= 0.1277 + 0.0281(z1 — 3.2) + 0.000937(z, — 32.5)
+0.00114(z4 — 42.5) + 0.00058(z3 — 3.75) (x4 — 42.5)
—0.000082(z — 32.5)2 (2.2)

with R? = 97.05% and s = 0.0002. The residual plot and normal plot are shown
that the model (2.2) is acceptable.

2.4. Prediction and optimization

Models (2.1) and (2.2) obtained in the previous step can be used to predict
response at any point of the experimental domain. It also can be used for search-
ing the ‘best’ combination of the factor-value. We maximize y with respect to
z;,i = 1,...,4 under Models (2.1) or (2.2) respectively over the domain 7 given
in Step 1, that is to find z},7 = 1,...,4 such that

@(mi, 3:37 m§7 1132) = m7a_'x:g($17l‘2a $3,1L'4),

where §(z1, T, T3, 74) is given by (2.1) or (2.2) respectively. By any optimization
algorithm, it is easily found that under Model (2.1), the maximum point is 2] =
5.4, z5 = 50.2, 25 = 1, zf = 70 with §(5.4,50.2,1,70) = 19.3%; and under
Model (2.2), the maximum point is z} = 5.4, z3 = 43.9, z3 = 6.5, zj = 70 with
the maximum response §(5.4,43.9,6.5,70) = 26.5%. It looks Model (2.2) to be
better, but we need some additional experiment to judge this guess and to see
which model is closer to the real one.

2.5. Additional experiments

As two optimal points x} = (5.4,50.2,1,70) and x3 = (5.4,43.9,6.5,70) do
not appear in the plan (Table 2), some additional experiments are necessary. A
simplest way is to implement m runs at these two optimal points x] and x3 and
to compare their mean yield. Alternatively, the experimenter should consider a
further investigation and arrange a consequent experiment, for instance, one can
consider another uniform design on the domain that can cover x] and x5 and can
increase upper bound of the experimental level for z; and z4.
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2.6. Remarks

From the above demo example we can see that the uniform design is suitable
for the case where the underlying model is unknown. There are two major parts:
design and modelling. In the design part we borrow the concept of level from the
factorial design to choose a set of points uniformly scattered on the experimental
domain. For the modelling part the literature provides many smoothing tech-
niques, such as (orthogonal) polynomial regression, multivariate spline (Stone,
Hansen, Kooperberg and Truong, 1997), wavelets (Chui, 1992; Antouiadis and
Oppenheim, 1995), neural network (Caudill and Butler, 1992), and slice inverse
regression (SIR)(Li, 1991). It has no space to introduce all these methods, the
reader can refer to the references for the details.

For computer experiments in a system, the output of y can be determined
by (1.7). Due to complexity of the model, one wishes to find an approximation
model to the true one (1.7)

Yy =§($17"' 73;8)7 X = (l']_,"' ,.'L's) € T? (23)

that has an analytic expression and is simpler than the true one. The uniform
design can choose a set of points on 7 based on which we could find a suitable
approximation model §(z1,--- ,zs). Obviously, the above discussion on design
and modelling techniques can be applied to computer experiments. For industrial
experiments the number of runs is small for most cases due to limited budget while
for computer experiments the number of runs can be much larger. The reader
can refer to Fang et al. (2000), Li (2002), and Fang and Lin (2002) for some
interesting examples.

3. Measures of Uniformity and Construction of Uniform Designs

Let P = {x1,--+ ,X,} be a set of experimental points on the unit cube C* =
[0,1]°. There are many measures of uniformity, such as the star discrepancy, star
Lo-discrepancy, centered Ly-discrepancy (CD) and wrap-around La-discrepancy
(WD) (see Niederreiter, 1992; Hickernell, 1998). The last two measures have
good properties for construction of uniform designs and are easily to compute. A
computational formula for these two measures are given by
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(CDy(P))? = G_g)s - %ilﬁ[ <1 L ; 0.5] _ |z “2'0-5|2)

k=1 j=1
1 L. |.’13ki—0.5| lzL'ji-O.f)l I-'Eki_wji'
+FZZH[1+ Tt ](3-1)
k=1 j=11=1
and
4 1 =1 [3
2
(W Dy(P)) =(§) +§ZZH[5—1zki—xj,-1(1—|zk,-—zj,-|)}, (3.2)
k=1 j=1:=1
where x; = (Tk1, - , Tks).

Suppose we wish to find a uniform design U, (¢°)(cf. Definition 2.2) for a
given measure of uniformity, for example the centered Lo-discrepancy CD. We
need to find a U-type design U(n;¢°) such that it has the smallest CD-value
among all U(n;¢®) designs. This is an optimization problem and is a NP hard
problem in terms of complexity of the computation. A lot of efforts in the past
decades have been made for finding nearly uniform designs with n < 50 and
s < 20. For example, Wang and Fang (1981) employed the good lattice point
method, Fang, Shiu and Pan (1999) searched a nearly UD based on the most
uniform Latin square, Winker and Fang (1998) employed the threshold accepting
method to find nearly UDs. All the above authors chose the star discrepancy as
measure of uniformity. The most up-to-date studies can refer to Fang, Ma and
Winker (2001) and Fang and Ma (2001b). The uniform designs on the UD-web
site are obtained by Fang et al. (2001) under the centered Lo-discrepancy.

4. Experiments with Mixtures

Many products are formed by mixtures of several ingredients, for example,
building construction concrete consists of sand, water and one or more types of
cement. Designs for deciding how to mix the ingredients are called ezperimental
designs with miztures that have played an important role in various fields such as
chemical engineering, rubber industry, material and pharmaceutical engineering.

A design of n runs for mixtures of s ingredients is a set of n points in the
domain

Ts={(a:1,---,£l:s)::l3j20, 1<j5<s, $1+"'+xs:1}-
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Due to the constrain z;1 + --- + 5 = 1, to find a design for experiments with
mixtures is quite different from the factorial design where there is no constrain on
the factors. A lot of designs have been proposed in the past such as the simplex-
lattice design and the simplex-centroid design. Cornell (1990) and references
therein gave a comprehensive review on designs of experiments with mixtures.
Alternatively, Wang and Fang (1990) proposed the uniform design of experiments
with miztures (UDEM) that seeks experimental points to be uniformly scattered
in the domain 7. This section gives an introduction to the methodology of the
uniform design of experiments with mixtures without/with constrains.

4.1. Uniform designs of experiments with mixtures

A uniform design of experiments with s-ingredient mixtures is a set of points
that are uniformly scattered on the domain 7. Wang and Fang (1990) employed
the transformation method for construction of such uniform designs as following
steps:

(a) Choose a uniform design, denoted by U = (uy;), Up(n®~1).
(b) Calculate cx; = (ug; — 0.5)/n, then

{ck = (ckh"' ,Ck,s—l),k = ]_’ ,n}
isa UD on C*~1 = [0,1]*~
(c) Calculate
o = (1~ ckz )HJ 1ij T i=1..,8—1,
zks = [[52 }c,;]”, k=1, ,n

Then {xx = (21, - ,Zks), k = 1,--- ,n} is a uniform design on 7.

(4.1)

Example 3. We give a UDEM for n = 11, s = 3. The first two columns of Table
3 forms a Uj;(112), the next two columns are cj,cz, a UD on [0,1]?. Formula
(4.1) for s = 3 has a simpler form as follows

ZTr1 = 1 — /Cr1,
Zk2 = /Cr1(1 — ck2), (4.2)

Tks = Vekmck, k=1,...,n

The results are listed in the last three columns of Table 3.
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TaBLE 3 A UDEM forn=11,8=3

U11(112) c C2 (51 T2 T3

1 4 1722 7/22 | 0.78680 0.14536 0.06784
2 9 3/22  17/22 | 0.63073 0.08393 0.28535
3 7 5/22 13/22 | 0.52327 0.19503 0.28170
4 1 7/22 1/22 | 0.43592 0.53844 0.02564
5 11 9/22  21/22 | 0.36040 0.02907 0.61053
6 3 11/22 5/22 | 0.29289 0.54640 0.16071
7 6 13/22 11/22 | 0.23129 0.38435 0.38435
8 8 15/22 15/22 | 0.17428 0.26273 0.56299
9 2 17/22  3/22 | 0.12095 0.75918 0.11987
10 10 | 19/22 19/22  0.07068 0.12673 0.80259
1 5 21/22  9/22 | 0.02299 0.57732 0.39969

4.2. Uniform design of experiments with restricted mixtures

However, in most experiments with mixtures some constrains have to be
placed on the ingredients. For example, in making a cake, water and flour should
be the major ingredients while sugar and milk have a small percentages. The
constrains may be 0 < a; <z; < by <1l,i=1---,;5,or0<a<x<b<1
where a = (a1, - ,as), b = (b1, -+ ,bs) and 0 and 1 are vectors of 0’s and 1’s,
respectively. In this case the experimental domain becomes

T°(a,b) ={x:0<a<x<b<1} (4.3)

The domain Ts(a,b) is not empty if and only if

azzn:a,-<1<§n_:b,-5b.
i=1 =1

The above condition may involve some superfluous constraints that can be re-
moved by the following operation:

a; = ma.x(a,-, b; +1— b), b, := min(bi, a;+1— a). (44.)

Wang and Fang (1996) applied the transformation method for construction of
uniform designs on T%(a, b), but their method can not give a good design when
some d; = b; — a; are very small. Recently, Fang and Yang (1999) employed the
conditional method to propose an alternative method that can construct uniform
designs for all cases. Let x = (X3, --,X;) follow the uniform distribution over
Ts(a,b). The Fang-Yang’s method is based on the following facts:
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(a) The distribution of X; can be analytically expressed in a simple form;

(b) The conditional distribution of Xj,--- X1 for given X; = z* is the
uniform distribution over T°~!(a* b*) where a* and b* can be expressed in terms
of a,b and z3.

For introducing our algorithm, let

As=10;=1-%3 1y k=5—-1,...,2
dy = max{ay /D, 1 = X bi/A Lk =5,5-1,...,2,
&) = max{bx/Ar, 1 ~ S5l ai/AY k=s,5~1,...,2,
G(u,d,b,c,k) = c{1 — [u(l — b)* + (1 — u)(1 — d)¥]1/*}.

Algorithm of generating a variate for the uniform distribution on

T4(a,b)
Step 1: Generate s — 1 random numbers usg, - - - , ug;
Step 2: Let
Tp = G(Uk,dk,@k,Ak,k— l)ak =858 1) 727
S
1 =1- kaa
k=2
Then x = (21, -+ , ;) is a sample for the uniform distribution on 7%(a, b).

Algorithm of generating a UD with restricted mixtures
Step 1: Choose a Up(n®~!), denoted it by U = (u;;);
Step 2: Calculate

tij:—.——,izl,,,.,n,jzl,...,s_l;

Step 3: For each i, to apply the above algorithm with (;,...,t;5~1) as
Ug, ..., Us and to calculate

Tik = G(tik‘adka@k,Ak)k_l)ak =8,8—2,...,2,
s

T =1-Y zx,
k=2

Then {x; = (z1,...,%is),¢ = 1,...,n} is a UD with restricted mixtures over
T%(a,b).
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Example 4. Consider an experiment with mixtures in a pharmaceutical study
where it is necessary to dissolve a slightly polar drug in a mixture of water and
two cosolvents, ethanol and propylene glycol, to increase the drug’s solubility. It
is also of interest to know whether and where a maximum exists in the solubility
profile of the drug in the mixture of solvents.

The three factors, ethanol (z1), propylene glycol (z2) and water (z3) are cho-
sen with the domain T3(a, b) = {x = (21, z2,z3) : 0.0463 < z; < 0.7188,0.0272 <
Ty < 0.5776,0.2272 < z3 < 09265, 27 + 22 + z3 = 1}. The response measured is
the vapor pressure (y) (mm Hg).

Suppose that we want to put 12 experimental points uniformly scattered on
this domain. Applying the above algorithms to the case where n = 12 and s = 3,
we can obtain a UD with restricted mixtures over T3(a,b). The 12 points and
the corresponding responses obtained are shown in Table 4.

TABLE 4 Design and responses in Ezample 4

No. T op) T3 y -
1 012296 0.11323 0.76381 31.5042
2 0.35453 0.04379 0.60168 51.5640
3 0.24176 0.36565 0.39259 30.0888
4 0.26635 0.47616 0.25849 28.9297
5 0.05914 0.41827 0.52258 21.5290
6 0.55981 0.07786 0.36233 56.6437
7 0.52303 0.22904 0.24793  44.9973
8 0.20319 0.18860 0.60821 36.6152
9 0.11576 0.54129 0.34296 20.3480

10 0.40656 0.15008 0.44336 45.6282
11 0.14105 0.27173 0.58723  30.8623
12 0.33631 0.31707 0.34662 37.0407

We consider the second-order centered quadratic regression model. By using
model selection techniques, the final model is

g = 37.3126 + 84.6285(z; — 0.2775)
+84.0939(z; — 0.2775)(z3 — 0.4565)
+40.9079(z3 — 0.4565) (4.5)

with R? = 98.94% and s? = 1.8969. Then we maximize y with respect to z;,i =
1,2, 3 under models (4.5) over the domain T3(a, b), and find that max § = 59.2179
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at the point z; = 0.7188, 25 = 0.0272,z3 = 0.2540. By some additional experi-
ments at the ingredient-combination z; = 0.7188,zy = 0.0272,z3 = 0.2540, the
average of vapor pressure is 61.75.

5. Statistical Models and Applications of Uniform Designs

5.1. Statistical models

There are different models to explain the usefulness of uniform design. The
overall mean model that wants to estimate the overall mean of the response over
the region has been widely used in computer experiments. Under model (1.7) the
overall mean of y on 7 is

#=/g($17 ,$s)d$1,"' 7d$s-
T

By a linear transformation, we can assume 7 is the unit cube C* = [0,1]® in R®.
The sample mean,

960 = = glxi),
=1

of a set of points determined by the design, P = {x1,--- ,x,} on C? is an
estimator of 4. The Latin hypercube sampling proposed by Makey, Beckaman and
Conover (1979) can provide an unbiased estimate of 1 with variance Op(n‘l/ 2)
as n — o0o. From the Koksma-Hlawka inequality (p.18, Niederreiter, 1992)

% — ul < V(g)D(P) (5-1)

where V(g) is the variation of g on C? in the sense of Hardy and Krause (p. 19,
Niederreiter, 1992) and D(P) is the star discrepancy of P (p. 14, Niederreiter,
1992), it indicates that a set P with smallest discrepancy for given n provides a
good design for estimating the mean p, i.e., P is a UD. The overall mean model
is the most popular one for justifying the Latin hypercube sampling as well as for
uniform design, see Fang and Wang (1994) and Hickernell (1998, 1999) for the
details. Wiens (1991) considered an approximately linear model and obtained
two optimality properties of uniform designs. Xie and Fang (2000) showed that
the uniform design is minimax and admissible in a certain model while Hickernell
(1999) pointed out the uniform design is a robust design. Recently, Lam, Welch
and Young (2002) in study on screening for drug discovery proposed so-called
uniform coverage designs and suggested some criteria for evaluating designs.
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5.2. Applications

Hundreds of case studies (see the UD web site) show wide applications of
the uniform design in various fields. Most of them are in industrial experiments.
There are also many applications of uniform designs to computer experiments.
Fang et al. (2000), Fang and Lin (2002) and Li (2002) gave a detailed discussion
and showed some case studies. Atkinson et al. (1998) discussed the possibility of
the use of D- and T-optimum designs to the kinetics of reversible chemical reac-
tion. Xu, Liang and Fang (2000) gave comparisons among D-optimal, orthogonal,
and uniform designs for this chemical reaction and found that the uniform de-
sign is the robust. Liang, Fang and Xu (2001) gave a comprehensive review on
applications of UD in chemistry and chemical engineering.

In the literature, the uniform design can be utilized as
e an industrial design with model unknown,

¢ a space filling design for computer experiments,

e a robust design against the model specification, and
¢ a design of experiments with restricted mixtures.

Advantages of uniform designs include
e more choices for the users,
¢ designs have been tabulated,
e both industrial and computer experiments can be applied, and
e less information of the underlying model is required.

6. Relationships Between Uniform Designs and Orthogonal
Designs

The orthogonal design (OD for short)is a kind of fractional factorial designs
and has been widely used for various fields. An OD is an orthogonal array of
strength two and is defined by

Definition 6.1. An orthogonal design table L,(q°) (OD table for short) is a U-
type design U(n; q®) such that all level-combinations in any two columns of the
table appear equally often.

It is clear that the OD requires one- and two-dimensional projection uni-
formity of experimental points over the domain (in the sense of balance among
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level combinations) while the UD asks for one-dimensional and overall uniformity.
Fang et al. (2000) found that many OD tables are UD ones under the centered
Ly-discrepancy. Later, Ma, Fang and Lin (2002) give some theoretic results on
relationships between uniformity and orthogonality.

There are many useful criteria for comparing factorial designs, such as resolu-
tion (Box, Hunter and Hunter, 1978) and minimum aberration (Fries and Hunter,
1980). For given a regular factorial design D of s factors, its word-length pattern,
denoted by W (D) = (A1(D),--- , As(D)), gives rich information on its statisti-
cal inference ability. The resolution and minimum aberration are defined based
on the word-length pattern. The reader can refer Dey and Mukerjee (1999) for
details of these criteria and concepts. For a two-level regular design D its word-
length pattern can be determined by the Hamming distances among the rows
of the design matrix Pp. It is interesting to note that the CD of the experi-
mental points of D can be expressed as a function of the Hamming distances of
the points. This fact was discovered by Fang and Mukerjee (2000) who obtained
an analytic link between the uniformity and word-length pattern for any regular
two-level factorials 257P. They showed

13)° 35\°  [8)\° >\ A{(D
[CDy(D))? = <ﬁ> -2 (52—> + (g) {1 + ; —é—)-} :
The above formula indicates that 1) the uniformity criterion is essentially con-
sistent with the resolution and minimum aberration criteria; 2) the uniformity
can be applied to any factorial design, but the resolution and minimum aberra-
tion can be applied only to regular designs. The above link can be extended to
factorials with more levels.

Two orthogonal designs are called isomorphic if one can be obtained from
the other by relabeling the factors, reordering the runs and switching the levels
of the factors. For identifying two L,(q°) designs, a complete search compares
n!(qg!)°s! designs from the definition of isomorphism. Therefore, to identify the
isomorphism of two d(n, g, s) designs is known to be an NP hard problem when n
and s increase. Obviously, two isomorphic designs have the same uniformity and
projection uniformity distribution. By the use this fact Ma, Fang and Lin (2001)
proposed a powerful algorithm for detecting non-isomorphic orthogonal designs.
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