초록
본 논문에서는 진화전략을 이용하여 빠르게 학습하는 새로운 구조의 뉴로퍼지 시스템을 제안하고 제안한 시스템의 효용성을 입증하기 위하여 비선형 시스템 동정에 응용한 결과를 설명한다. 뉴로퍼지 시스템의 학습 방법으로는 지금까지 주로 변형된 오류역전파 알고리즘과 최적화 기법인 유전자 알고리즘이 많이 사용되어왔으나, 오류역전파 알고리즘은 학습시간이 많이 걸리며 유전자 알고리즘은 해를 유전형 형태로 표현함으로 인하여 미세한 탐색이 힘든 단점이 있었다. 본 논문에서 사용한 진화전력은 해를 표현형의 개체로 나타내어 실수형태로 진화하기 대문에 미세한 탐색이 가능하며 오류역전파 알고리즘에 비해 지역해에 빠질 가능성이 작고 속도가 빠른 장점이 있다. 제안한 뉴로퍼지 시스템을 비선형 시스템 동정에 적용한 결과 학습속도가 빠르며 학습결과도 우수함을 보았다.
This paper proposes a new neuro-fuzzy system that is fast trained by evolution strategy and describes application results of the proposed system to nonlinear system identification to show its usefulness. As training methods of neuro-fuzzy systems, modified error back-propagation algorithms and genetic algorithms have been used so far. However, the former has some drawbacks such as long training time, falling to local optimum, and experimental selecting of learning rates and the latter has difficulty in precise searching solutions because genetic algorithms represents solutions as genotype individuals. The evolution strategy we used can do precise search because its individuals are represented as phenotype real values, it seldom falls into a local optimum, and its training speed is faster than error back-propagation algorithms. We apply our neuro-fuzzy systems to nonlinear system identification. It was found from experiments that training speed is fast and the training results were considerably good.