코히어런트 간섭문제 해결을 위한 공간보간 Duvall 빔형성기

A Duvall Beamformer with Spatial Interpolation to Solve Coherent Interferences Problem

  • 윤동현 (경북대학교 전자전기공학부) ;
  • 한동석 (경북대학교 전자전기공학부) ;
  • 고광식 (경북대학교 전자전기공학부) ;
  • 조명제 (국방과학연구소)
  • Yun, Dong-Hyeon (School of Electronic & Electrical Engineering, Kyungpook National University) ;
  • Han, Dong-Seok (School of Electronic & Electrical Engineering, Kyungpook National University) ;
  • Go, Gwang-Sik (School of Electronic & Electrical Engineering, Kyungpook National University) ;
  • Jo, Myeong-Je (Agency for Defense Development)
  • 발행 : 2002.01.01

초록

본 논문은 공간보간을 이용한 공간평활을 수행하는 수정된 구조의 Duvall 빔형성기를 제안한다. 제안한 빔형성기는 이웃한 어레이 소자 사이의 신호를 보간하여 가상의 어레이 소자 신호를 생성하고 이를 이용하여 공간평활을 수행한다. 제안한 빔형성기는 보간된 신호를 이용하여 부어레이를 형성함으로써 기존 공간평활 기법의 자유도 손실 문제를 해결한다. 수학적 분석을 통하여 제안한 빔형성기는 입력 공분산 행렬의 감소된 랭크를 회복할 수 있음을 확인하였다. 또한 모의실헐 결과에서도 제안한 빔형성기는 기존의 빔형성기가 제거할 수 없는 코히어런트 간섭신호를 제거함을 보였다.

This paper proposes a modified Duvall beamformer performing spatial smoothing with spatial interpolation. In the proposed beamformer, virtual array signals are generated by spatial interpolation between each neighbor array elements, then all signals are used to perform spatial smoothing. The proposed beamformer overcomes the loss of degrees of freedom caused by spatial smoothing by forming subarrays with interpolated signals. Mathematical description shows that the proposed beamformer can restore the rank of away covariance matrix. Accordingly, the proposed beamformer can minimize the loss of degrees of freedom. Simulation results show that the proposed beamformer can remove all coherent interferences while conventional beamformers cannot.

키워드

참고문헌

  1. R.T. Compton, Adaptive Antennas, Concepts and Performance, Englewood Cliffs, NJ: Prentice Hall, 1988
  2. B. Widrow and S. D. Steams, Adaptive Signal Processing, Englewood Cliffs, NJ: Prentice Hall, 1985
  3. B. Widrow. et al, 'Signal Cancellation Phenomena in Adaptive Antennas: Causes and Cures,' IEEE Trans. Antennas Propag., Vol. 30, No. 3, pp. 469-478, May 1982 https://doi.org/10.1109/TAP.1982.1142804
  4. T. J. Shan and T. Kailath, 'Adaptive Beamforming for Coherent Signals and Interference,' IEEE Trans. Acoust. Speech Signal Process., Vol. 33, No. 3, pp. 527-536, June 1985 https://doi.org/10.1109/TASSP.1985.1164583
  5. J. H. Lee and J. F. Wu, 'Adaptive Beamforming without Signal Cancellation in the Presence of Coherent Jammers,' IEE Proc. Radar, Sonar Navig., Vol. 136, No. 4, pp. 169-173, Aug. 1989
  6. J. F. Yang and M. Kaveh, 'Coherent Signal-subspace Transformation Beamformer,' IEE Proc. Radar, Sonar Navig., Vol. 37, No. 4, pp. 267-275, Aug. 1990.
  7. Y. H. Chen and F. P. Yu, 'Broadband Adaptive Beamforming Based on Coherent Signal Subspace Using Spatial Interpolation Preprocessing,' IEE Proc. Radar, Sonar Navig., Vol. 138, No. 5, pp. 489-494, Oct. 1991
  8. S. C. Pei, C. C. Yeh and S. C. Chiu, 'Modified Spatial Smoothing for Coherent Jammer Suppression without Signal Cancellation,' IEEE Trans. Acoust. Speech Signal Process, Vol. 36, No. 3, pp. 412-414, 1988 https://doi.org/10.1109/29.1541
  9. J. E. Evans, J. R. Johnson, and D. F. Sun, 'Applications of Advanced Signal Processing Techniques to Angle of Arrival Estimation in ATC Navigation and Surveillance System,' Lincoln Laboratory, MIT, Lexington, MA, Tech. Rep. 582, June 1982
  10. B. Friedlander and A. J. Weiss, 'Direction Finding Using Spatial Smoothing with Interpolated Arrays,' IEEE Trans. on Aerosp. Electro. Syst., Vol. 28, No. 2, pp. 574-587, Apr. 1992 https://doi.org/10.1109/7.144583
  11. R. A. Monzingo and T. W. Miller, Introduction to Adaptive Arrays, NY: Wiley-interscience Publication, 1980
  12. O. L. Frost, Ⅲ, 'An Algorithm for Linearly-constrained Adaptive Array Processing,' Proc. IEEE, Vol. 60, No. 8, pp. 926-935, Aug. 1972 https://doi.org/10.1109/PROC.1972.8817
  13. G. H. Golub and C. F. Van Loan, Matrix Computations, Baltimore, MD: The Johns Hopkins University Press, 1983