Wide Angle BPM 을 이용한 광도파로열 격자 파장 필터의 해석

Analysis of Arrayed Waveguide Grating Waveglength Filter using Wide Angle Beam Propagation Method

  • 박준오 (광운대학교 전자공학부 전자통신공학과) ;
  • 정영철 (광운대학교 전자공학부 전자통신공학과)
  • 발행 : 2002.02.01

초록

광도파로열 격자(AWG :Arrayed Waveguide Grating) 파장 필터는 전광 네트웍(All Optical Network)을 실현하는 매우 중요한 핵심 소자 중에 하나이다. 광도파로열 격자 파장 필터와 같은 광도파 소자를 해석 및 설계시 수학적인 해석이 필요하며, 가장 대표적인 방법은 BPM(Beam Propagation Method)이다. 본 논문에서는 Paraxial BPM과 Wide Angle BPM을 InP/InGaAsP/InP 광도파로열 격자 파장 필터 해석에 적용시켜 정화도의 차이를 고찰해 보았다. WA-BPM을 구현하기 위하여 저차의 Pade Approximant를 적용하였다. 광도파로열 격자 파장 필터의 SLL(Side Lobe Level)과 삽입손실(Insertion Loss)을 비교하여 분석하였다. 광도파로열 격자 파장 필터를 정확하게 해석 및 설계하기 위해서는 고차의 WA-BPM을 사용해야 함을 확인하였다.

The key component to accomplish the WDM all optical network is an Arrayed Waveguide Grating(AWG) wavelength filter Numerical analysis is necessary for design and analysis of optical components like AWG wavelength filter. Beam Propagation Method(BPM) is the most widely-used method. In this paper, we analyze the difference between the paraxial BPM and the WA-BPM when they are applied to the analysis of InP/InGaAsP/InP AWG wavelength filter. The paraxial BPM is based on paraxial approximation, and the WA-BPM is based on the low order Pade approximant. The side lobe level(SLL) and insertion loss calculated from both methods are compared. The high order Pade approximant will to used to more accurate design and analysis of AWG.

키워드

참고문헌

  1. Meint K. Smit, Cor Van Dam, 'PHASAR-Based WDM Devices : Principles, Design and Applications' IEEE J. Selected Topics in Quantum Electron., Vol. 2, No. 2, pp. 236-250, 1996 https://doi.org/10.1109/2944.577370
  2. Hiroshi Takahashi, Kazuhiro Oda, Hiroma Toba, Yasuyuki Inoue 'Transmission Characteristics of Arrayed Waveguid $N{\times}N$ Wavelength Multiplexer' IEEE Journal of Lightwave Technology., Vol. 13, No 3, pp. 447-455, 1995 https://doi.org/10.1109/50.372441
  3. Youngchul Chung, Nadir Dagli, 'An Assessment of Finite Difference Beam Propagation Method' IEEE J. Quantum Electron, Vol. 26, No. 8, pp. 1335-1339, 1990 https://doi.org/10.1109/3.59679
  4. David Yevick, Moses Glasnet, 'Forward Wide Angle Light Propagation in Semiconductor Rib Waveguides', Optics Letters, Vol. 15, No. 3, pp. 174-176, 1990 https://doi.org/10.1364/OL.15.000174
  5. Y. Chung, 'Factored Wide Angel Propagation Technique applied to Turning Mirror Simulation', Electronics Letters Vol. 32, No. 6, pp. 545-547, 1996 https://doi.org/10.1049/el:19960368
  6. 박준오, 정영철 'Wide Angle BPM을 이용한 AWG 시뮬레이션', COOC 2000, pp 29-30, 2000
  7. Pao-Lo Liu, Qida Zhao, Fow-Sen Choa, 'Slow-Wave Finite-Difference Beam Propagation Method', IEEE Photonics Technology Letters, Vol. 7, No. 8, 1995 https://doi.org/10.1109/68.404005
  8. Fred Ma, 'Slowly Varying Envelope Simulation of Optical Waves in Time Domain with Transparent and Absorbing Boundary Conditions' IEEE Journal of Lightwave Technology Vol. 15, No 10, pp. 1974-1985, 1997 https://doi.org/10.1109/50.633603
  9. lgor Ilic, Robert Scarmozzino, Richard M. Osgood, 'Investigation of the Pade Approximant-Based Wide-Angle Beam Propagation Method for Accurate Modeling of Waveguiding Circuits', IEEE Journal of Lightwave Technology, Vol. 14, No 12, pp. 2813-2822, 1996 https://doi.org/10.1109/50.545802
  10. G. Ronald Hadley 'Multistep method for wide-angle beam propagation' Optics Letters, Vol. 17, No 24, 1743-1745, 1992 https://doi.org/10.1364/OL.17.001743
  11. Joonoh Park, Youngchul Chung, 'Flat Passband Design of Phased Array Wavelength Router using Misaligned Array Waveguides', Journal of Electrical Engineering and Information Science., Vol. 5, No. 3, pp 235-240, 2000