양자 우물 소자 모델링에 있어서 다중 에너지 부준위 Boltzmann 방정식의 Self-consistent한 해법의 개발

Self-consistent Solution Method of Multi-Subband BTE in Quantum Well Device Modeling

  • 이은주 (한림대학교 정보통신공학부)
  • Lee, Eun-Ju (Dept. of Information Communication Engineering, Hallym University)
  • 발행 : 2002.02.01

초록

양자 우물 반도체 소자 모델링에 있어서 양자 우물의 다중 에너지 부준위 각각에 대한 Boltzmann 방정식의 해를 직접적으로 구하는 self-consistent한 방법을 개발하였다 양자 우물의 특성을 고려하여 Schrodinger 방정식과 Poisson 방정식 및 Boltzmann 방정식으로 구성된 양자 우물 소자 모델을 설정하였으며 이들의 직접적인 해를 유한 차분법과 Gummel-type iteration scheme에 의해 구하였다. Si MOSFET의 inversion 영역에 형성되는 양자 우물에 적용하여 그 시뮬레이션 결과로부터 본 방법의 타당성 및 효율성을 보여 주었다.

A new self-consistent mathematical model for semiconductor quantum well device was developed. The model was based on the direct solution of the Boltzmann transport equation, coupled to the Schrodinger and Poisson equations. The solution yielded the distribution function for a two-dimensional electron gas(2DEG) in quantum well devices. To solve the Boltzmann equation, it was transformed into a tractable form using a Legendre polynomial expansion. The Legendre expansion facilitated analytical evaluation of the collision integral, and allowed for a reduction of the dimensionality of the problem. The transformed Boltzmann equation was then discretized and solved using sparce matrix algebra. The overall system was solved by iteration between Poisson, Schrodinger and Boltzmann equations until convergence was attained.

키워드

참고문헌

  1. Thomas G. Pedersen, Kjeld Pedersen and Thomas B. Kristensen, 'Optical second-harmonic generation as a probe of quantum well states in ultrathin Au and Ag films deposited on Si(111)', Thin Solid Films, vol. 364, 1-2 pp. 86-90, 2000 https://doi.org/10.1016/S0040-6090(99)00913-X
  2. YC Yeo, TC Chong, MF Li, WJ Fan, 'Electronic band structures and optical gain spectra of strained wurtzite GaN-AlxGa1-xN quantum-well lasers', IEEE Journal of Quantum Electronics vol. 34 no. 3, pp.526-534, 1998 https://doi.org/10.1109/3.661462
  3. R. Tsu, 'Silicon-based quantum wells', Nature, Vol. 364, 1 July 1993 https://doi.org/10.1038/364019a0
  4. M.S. Boris Gelmont and C. Moglestue, 'Theory of Junction Between Two-Dimensional Electron Gas and p-Type Semiconductor', IEEE Trans. on ED. vol. 39, no. 5, pp. 1216-1223, 1992 https://doi.org/10.1109/16.129106
  5. R. L. Liboff, Introduction to the Theory of Kinetic Equations. New York : John Wiley & Sons, 1969
  6. Q.L., S.-L. Wang, N. Goldsman and J. Frey, 'RELY : A physics-Based CAD Tool for Predicting Time-Dependent Hot Electron Induced Degradation in MOSFETs', Solid-State Electronics, vol. 36, pp. 833-841, 1993 https://doi.org/10.1016/0038-1101(93)90005-B
  7. C. E. Korman and I. D. Mayergoyz, 'A Glovally Convergent Algorithm for the Solution of the Steady-State Semiconductor Device', Journal of Applied Physics, vol. 68, no. 3, pp. 1324, 1990 https://doi.org/10.1063/1.346702
  8. W. Quade, M. Rudan, and E. Scholl, 'Hydrodynamic Simulation of Impact-Ionization Effects in P-N Junctions', IEEE Trans. Computer-Aided Design, vol. 10, no. 10, pp. 1287-1294, 1991 https://doi.org/10.1109/43.88924
  9. S. E. Laux and M. V. Fischetti, 'Monte Carlo Study of Velocity Overshoot in a 0.1 Micron CMOS Inverter', Proceedings, 1995 IEDM, pp. 877-880, December 1997 https://doi.org/10.1109/IEDM.1997.650521
  10. Blachman, N., 'Mathematica : a Practical Approach', 2nd ed., Prentice Hall(Upper Saddle River, N.J), 1999
  11. E. M. Conwell, 'High Field Transport in Semiconductors', Solid State Physics, Suppl. 9. Academic Press, New York, 1967
  12. B. N. Parlett, 'The Symmetrical Eigenvalue Problem', Prentice Hall, 1980
  13. F. Stern and W. E. Howard, 'Properties of Semiconductor Surface Inversion Layers in the Electric Quantum Limit', Physics Review, vol. 163, no. 3, 1967 https://doi.org/10.1103/PhysRev.163.816