산화에 따른 옥수수 전분의 분자량 분포 양상

The Molecular Weight Distribution Pattern in Oxidized Corn Starch

  • 한진숙 (서울대학교 생활과학대학 식품영양학과) ;
  • 안승요 (서울대학교 생활과학대학 식품영양학과)
  • 발행 : 2002.04.01

초록

본 연구는 옥수수 전분의 기능 특성을 개선시키고자, 다양한 sodium hypochlorite(NaOCl)농도에서 산화시킨 산화 전분의 분자 구조적 변화에 대하여 시험하였다. 전분의 분자량 분포에서 산화 전분은 고분자량의 피크가 점차 작아지고 저분자량 부분의 피크가 높아져 전체적 분자량 분포가 낮은 쪽으로 이동하였고, 요오드 최대 흡수 파장이 감소되면서 색깔이 변화하였다. 무처리 전분은 온도가 증가함에 따라 분자량이 큰 부분의 용출이 증가하였다. 산화전분의 경우 아밀로펙틴이 산화에 의해 분해되어 전분 입자내에 큰 분자량을 가진 분자가 감소되면서 작은 분자량을 가지는 분자가 증가되기 때문에 가용성 탄수화물의 양이 증가하였다. DSC 특성에서는 상전이 온도 범위와 엔탈피의 차이는 없었으나 산화 전분이 무처리 전분보다 노화경향이 더 크게 나타났다. 산화전분용액의 광투과도는 증가하였다.

Corn starch was modified by the oxidation with sodium hypochlorite(NaOCl) and the changes in the distribution of molecular weight were examined. Corn starch was oxidized with 0.25, 0.5, 0.75, 1.0, and 1.5% active Cl/g of starch at pH 7.0 and 25$^{\circ}C$ for 10 min. Oxidation of corn starch caused a change in the molecular weight distribution of amylopectin. The fraction of highest molecular weight in native starch decreased gradually and the fraction of lower molecular weight increased with increasing oxidation. Also, λ$\sub$max/ and iodine binding capacities of oxidized starches decreased and the soluble carbohydrate content increased by oxidation. The differential scanning calorimetric results of oxidized starches showed that the temperature and enthalpies of gelatinization were not changed by oxidation; however, the more the starch was oxidized, the greater the extent of retrogradation.

키워드

참고문헌

  1. Wurzburg, O. B. and Szymanski, C. D.: Modified starch for the food industry. J. Agric. Food Chem., 18:977, 1970 https://doi.org/10.1021/jf60172a026
  2. Alexander, R. J.: Modified starches and their uses in Food Application. Korea Corn Processing Industry Association, U.S. Grains Council., 1995
  3. Smith, P. S.: Starch derivatives and their use in foods In Food Carbohydrates, Ed by Lineback, D. R. and Inglett, G. E., Avi Publishing Co., Inc. Westport Conn., pp237-269, 1982
  4. Hebeish, A. Thalouth, A. E., Refai, R and Ragheb, A.: Synthesis and characterization of hypochlorite oxidized starches. Stärke, 41(1):293, 1989 https://doi.org/10.1002/star.19890410804
  5. Hebeish, A., El-Sisy, F., Abdel-Hafiz, S. A. and El-Rafie, M. N.: Oxidation of maize and rice starches using sodium chlorite along with formaldehyde. Stärke, 44(2):388, 1992 https://doi.org/10.1002/star.19920441007
  6. Wing, R. E.: Oxidation of starch by thermochemical processing.Stärke, 46(3):414, 1994 https://doi.org/10.1002/star.19940461103
  7. Han, J. S. and Ahn, S. Y.: Characteristics in oxidation of Korean corn starch with sodium hypochlorite. Korean J. Food Sci. Technol., 29(6):1094, 1997
  8. Dubois, M., Gilles, K. A., Hamiton, J. K., Robers, P. A. and Smith, F.: Colorimetric method for determination of sugar and related substances. Anal. Chem., 25:1656, 1953 https://doi.org/10.1021/ac60083a023
  9. Billaderis, C. G., Grant, D. R. and Vose, J. R.: Structural characterization of legume starches.Ⅰ.Studies on amylose, amylopectin and beta-limit dextrins. Cereal Chem., 59:496, 1981
  10. Manelius, R., Buléon, A., Murmi, K. and Bertoft, E.: The substitution pattern in cationised and oxdised potato starch granules. Carbohydr. Res., 329:621, 2000 https://doi.org/10.1016/S0008-6215(00)00206-8
  11. Henriksn$\ddot{a}$s, H. and Bruun, H.: Molecular weight distribution in starch solutions when hydrolised with $\alpha$-amylase and when oxidized with sodium hypochlorite. St$\ddot{a}$rke, 30:233, 1978 https://doi.org/10.1002/star.19780300705
  12. Ali, S. Z. and Kempf, W. : On the degradation of potato starch during acid modification and hypochlorite oxidation. Stärke, 38(1):83, 1986 https://doi.org/10.1002/star.19860380305
  13. Floor, M., Kieboom, A. P. G. and Bekkum, H. V.: Preparation and calcium complexation of oxidized polysaccharides. Stärke, 41:348, 1989 https://doi.org/10.1002/star.19890410907
  14. Billiaderis, C. G., Grant, D. R. and Vose, J. R. : Molecular weight distribution of legume starch. Cereal Chem., 56:475, 1979
  15. Boruch, M.: Transformation of potato starch during oxidation with hypochlorite. Stärke, 37(1):91, 1985 https://doi.org/10.1002/star.19850370306
  16. Ghiashi, K., Varriano-Marston, E. and Hoseney, R. C.: Gelatinization of wheat starch. Ⅳ. Amylograph viscosity. Cereal Chem., 59:262, 1982
  17. Subrahmanyam, S. N. and Hoseney, R. C.: Shear thinning properties of sorghum starch. Cereal Chem., 72(1):7, 1995
  18. Autio, K., Suortt, T., Hamunen, A., and Poutanen, K.: Microstructural and physicochemical properties of oxidized potato starch for paper coating. Stärke, 44:388, 1992 https://doi.org/10.1002/star.19920441007
  19. Kugimiya, M. Donovan, D. W. and Wong, R. T.: Phase transitions of amylose-lipid complexes in starches. A calorimetric study. Stärke, 32:265, 1980 https://doi.org/10.1002/star.19800320805
  20. Forssell, P., Hamunen, A, Autio, K., Suortti, T. and Poutanen, K.: Hypochlorite oxidation of barley and potato starch. Stärke, 47:371, 1995 https://doi.org/10.1002/star.19950471002
  21. Parovuori, D., Hamunen, A., Forssell, P., Autio, K. and Poutanen, K.: Oxidation of potato starch by hydrogen peroxide. Stärke, 47(1):19, 1995 https://doi.org/10.1002/star.19950470106
  22. Nakazawa, F., Noguchi, S., Taakahachi, J. and Takada, M.: Gelatinization and retrogradation of rice starch studied by differential scanning calorimetry. J. Agric. Biol. Chem., 48:201, 1983
  23. Chung, K. M. and Seib, P. A.: Thin-boiling and non-gelling adhesive prepared from maize and wheat starches. Stärke, 43:441, 1991 https://doi.org/10.1002/star.19910431107