Cloning and Expression of a Human Homolog of Mouse Gamml, MVGI, Localized in 12q13

인간염색체 12q13에 내재한 마우스 Gamm1의 인간유전자 homolog, MYG1의 클로닝과 발현

  • Yang, Keum-Jin (Research Institute of Molecular Genetics, Catholic Research Institutes of Medical Science) ;
  • Lee, Hyoung-Nam (Research Institute of Molecular Genetics, Catholic Research Institutes of Medical Science) ;
  • Bae, Youn-Jung (Research Institute of Molecular Genetics, Catholic Research Institutes of Medical Science) ;
  • Shin, Dong-Jik (Research Institute of Molecular Genetics, Catholic Research Institutes of Medical Science) ;
  • Kim, Eun-Min (Research Institute of Molecular Genetics, Catholic Research Institutes of Medical Science) ;
  • Yoon, Jong-Bok (Department of Biochemistry, PNRC, Yonsei University) ;
  • Park, Young-Il (Department of Biochemistry, PNRC, Yonsei University) ;
  • Kim, Jun (Life Technology Institute, Korea University of Korea) ;
  • Yu, Ji-Chang (Department of Pathology, The Catholic University) ;
  • Kim, Sung-Joo (Research Institute of Molecular Genetics, Catholic Research Institutes of Medical Science)
  • 양금진 (가톨릭의과학연구원) ;
  • 이형남 (가톨릭의과학연구원) ;
  • 배윤정 (가톨릭의과학연구원) ;
  • 신동직 (가톨릭의과학연구원) ;
  • 김은민 (가톨릭의과학연구원) ;
  • 윤종복 (연세대학교 생화학과 PNRC) ;
  • 박영일 (연세대학교 생화학과 PNRC) ;
  • 김준 (고려대학교 생명공학원) ;
  • 유지창 (가톨릭대학교 의과대학 병리학교실) ;
  • 김성주 (가톨릭의과학연구원)
  • Published : 2002.08.01

Abstract

Isolation of a gene and determination of its expression pattern are essential in understanding its function. Among the genes localized in 12ql3, stSG3435 EST was chosen to study its expression pattern. The full-length CDNA was cloned by screening of human brain CDNA library and its sequence was determined by serial deletion followed by automated sequencing of the clones with overlapping fragments. The sequence analysis revealed that stSG 3435 CDNA displayed 100% identity to human MYGI and 86% identity to mouse melanocyte proliferation gene-1 (Gamm 1) originally identified from melanocyte, suggesting that MYGI determined by Northern blot analysis revealed the strongest expression in testes with ubiquitous expression in all the tissues tested. In order to investigate the cellular localization of its protein product, the green fluorescence protein gene was fused into the full-length coding sequence of MYGI, Transfection of the fusion construct followed by confocal microscopy resulted in the green fluorescence signal as a punctate state in cytoplasm indication that MYGI was localized in one of the cellular organelles.

새로운 유전자를 클로닝하고 그 발현양상을 결정하는 것은 유전자의 기능을 이해하는데 필수적이다. 인간유전자 12q13의 고해상 물리지도를 작성하면서 이 지역의 D12S359와 D12S1618 사이에 내재하는 것으로 mapping된 stSG 3435 EST의 유전자를 클로닝하고 그 발현양상을 조사하였다. NIBI library를 조사하여 stSG 3435를 포함하는 클론 325E4를 분리하여 순차적 결실 방법으로 클로닝하여 자동염기서열분석으로 염기서열을 결정하였다. 1,331 bp의 염기서열을 가진 이 유전자는 Blast search에 의하면 376 개의 아미노산으로 이루어진 단백질로써 인간의 MYGI과 동일하며 마우스의Gamml, melanocyte proliferation gene 1과 86%의 동질성을 보였다. MYGI은 인간염색체의 12에 내재하며 마우스의 Gamml은 syntenic 부위인 마우스 염색체 15에 내재하므로 마우스의 Gamml의 homolog으로 간주된다. Northern blot analysis 결과 MYG1은 인간의 모든 조직에서 발현되며 정소에서 가장 강한 발현을 보였다. 이 유전자의 세포내 발현을 green fluorescence protein과 융합시켜 발현 귀착지를 confocal 현미경으로 동정한 결과 MYG1 단백질은 핵과 리소좀을 제외한 소기관에서 발현되는 것을 관찰하였다.

Keywords

References

  1. Lander, E. S., L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Baldwin, K. Devon, K. Dewar, M. Doyle, and W. FitzHugh et al. (2001), Initial sequencing and analysis of the human genome, Nature 409, 860-921 https://doi.org/10.1038/35057062
  2. Venter, J. c., M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G. Sutton, H. O. Smith, M. Yandell, C. A. Evans, and R. A. Holt et al. (2001), The sequence of the human genome, Science 291, 1304-1351 https://doi.org/10.1126/science.1058040
  3. Denton M. D., T. Yoshida, L. L. Hsiao, R. V. Jenson, and S. R. Gullans (2002), DNA microarrays: applicability to renal physiology and disease, J. Nephrol. 5, 184-191
  4. Gershon, D. (2002), Microarray technology: an array of opportunities, Nature 416, 885-891 https://doi.org/10.1038/416885a
  5. Baird, P. N., R. H. Guymer, D. Chiu, A. L. Vincent, W. S. Alexander, S. J. Foote, and D. J. Hilton (2002), Generating mouse models of retinal disease using ENU mutagenesis, Vision Res. 42, 479-485 https://doi.org/10.1016/S0042-6989(01)00232-210.1016/S0042-6989(01)00232-2
  6. Herron B. J., W. Lu, C. Rao, S. Liu, H. Peters, R. T. Bronson, M. J. Justice, J. D. McDonald, and D. R. Beier (2002), Efficient generation and mapping of recessivedevelopmental mutations using ENU mutagenesis, Nat. Genet. 30, 185-189 https://doi.org/10.1038/ng812
  7. Reboul J., P. Vaglio, N. Tzellas, N. Thierry-Mieg, T. Moore, C. Jackson, T. Shin-i, Y. Kohara, D. Thierry-Mieg, and J. Thierry-Mieg et al. (2001), Open-reading-frame sequence tags (OSTs) support the existence of at least 17,300 genes in C. elegans, Nat. Genet. 27, 332-336 https://doi.org/10.1038/8591310.1038/85913
  8. Butler, D. (1999), Venter's Drosophila 'success' set to boost human genome efforts, Nature 401, 729-730 https://doi.org/10.1038/44
  9. Sambrook and Russell (2001), Molecular cloning, 3rd ed., p7.42-7.45, 9.4-9.11, CSHL Press, New York
  10. Ed Harlow and David Lane (1999), Using Anitbodies, p267-309, CSHL Press, New York
  11. Lee H., E. Choi, Y. Seomun, K. Montgomery, A. Huebner, E. Lee, S. Lau, C. K. Joo, R. Kucherlapati, and S. J. Yoon (2000), High-resolution transcript map of the region spanning D12S1629 and D12S312 at chromosome 12q13: triple A syndrome-linked region, Genome Res. 10, 1561-1567 https://doi.org/10.1101/gr.142100
  12. http://www.ncbLnlm.nih.gov/BLAST
  13. Bonaldo, M. F., G. Lennon, and M. B. Soares (1996), Normalization and subtraction: two approaches to facilitate gene discovery, Genome Res. 6, 791-806 https://doi.org/10.1101/gr.6.9.791
  14. Shibata, K., M. Itoh, K. Aizawa, S. Nagaoka, N. Sasaki, P. Carninci, H. Konno, J. Akiyama, K. Nishi, and T. Kitsunai (2000), RIKEN integrated sequence analysis (RISA) system384-format sequencing pipeline with 384 multicapillary sequencer, Genome Res. 11, 1757-1771 https://doi.org/10.1101/gr.152600
  15. Carninci, P., Y. Shibata, N. Hayatsu, Y. Sugahara, K. Shibata, M. Itoh, H. Konno, Y. Okazaki, M. Muramatsu, and Y. Hayashizaki (2000), Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes, Genome Res. 11, 1617-1630 https://doi.org/10.1101/gr.145100
  16. Kawai, J. A., Shinagawa, K. Shibata, M. Yoshino, M. Itoh, Y. Ishii, T. Arakawa, A. Hara, Y. Fukunishi, and H. Konno, (2001), Functional annotation of a full-length mouse cDNA collection, Nature 409, 685-690 https://doi.org/10.1038/35055500