Isolation and Characteristics of a Homofermentative lactic Acid Bacterium

호모발효 젖산군의 분리 및 특성

  • 하미영 (전남대학교 공과대학 환경공학과) ;
  • 정선용 (전남대학교 공과대학 환경공학과) ;
  • 김성준 (전남대학교 공과대학 환경공학과)
  • Published : 2002.08.01

Abstract

This study was targeted to isolate and characterize a bacterium producing lactic acid in a large amount. Lactic acid bacteria of about fifty strains were isolated from kimchi, a Korean traditional fermented vegetable food. Strain KH-1 of them was most effective in the lactic acid production and showed 99% homology with Lactobacillus casei from analysis of 16S rRNA sequencing. The conversion ratio of lactic acid from glucose by 1. casei KH-1 was 98% in anaerobic condition, and the lactic acid was composed as racemic mixture of D(-)-and L(+)-lactic acid, 7% and 93%, respectively. This result indicated that L. casei KH-1 was a homofermentative bacterium mainly producing L(+)-lactic acid. The strain KH-1 used glucose as a preferential substrate but not utilized lactose. In investigation of more inexpensive nitrogen source for cultivation of strain KH-1 using industrial MRS medium, when yeast extract and corn steep liquor were used at the ratio of 1 to 1, the molar yield of lactic acid produced per mole of glucose(Yp/s) was 1.09.

생분해성 고분자 합성물질의 원료가 되는 젖산을 주로 생산하는 균을 김치로부터 분리하였다 SEM을 사용하여 관찰한 분리한 균의 형태는 연쇄간균이었고 165 rRNA sequencing 에 의해 계통발생학적 분석의 결과 Lactobacillus casei KH-1로 명명하였다. 1. casei KH-1는 g1ucose를 젖산으로 98%를 전환시키는 호모발효균이었으며, D(-)와 L(+)-이성질체를 각각 7%와 93%를 포함하는 racemic mixtrure로 젖산을 생산하였다. L. casei KH-1은 다른 lactobacillus속과는 달리 세포의 성장과 젖산의 생산에 기질로서 lactose를 이용하지 못하였지만 glucose의 이용은 이전의 연구들과 비교할 때 효과적이었다. Lactobacillus속의 배양에 사용되는 MRS배지의 질소원을 저렴한 원료 즉, YE와 CSL를 1:1로 첨가한 배지로 대신하여 최대의 젖산수율(1.09 mole .mole$^{-1}$)을 얻어 젖산발효에 효과적인 질소원의 대체가 이루어졌다

Keywords

References

  1. Vickroy, T. B. (1985), Lactic Acid, in Comprehensive Biotechnology Vol. 3, H. W. Blanch, S. Drew, and D. I. C. Wang, Eds., pp761-776, Pergamon Press, New York
  2. Kwon, S. H., P. C. Lee, E. G. Lee, Y. K. Chang, and N. Chang (2000), Production of lactic acid by Lactobacillus rhamnosus with vitamin-supplemented soybean hydrolysate, Enzyme Microb, Technol. 26, 209-215 https://doi.org/10.1016/S0141-0229(99)00134-9
  3. Kim, Y. H., K. B. Lee, and S. H. Moon (1999), A study on industrial media for production of lactic acid in batch and continuous fermentations, Kor. J. Biotechnol. Bioeng. 14, 181-187
  4. Thomas, M. W. and K. M. Bhat (1988), Methods for measuring cellulase activities, Method. Enzymol. 160, 87-112 https://doi.org/10.1016/0076-6879(88)60109-1
  5. Jørgen J. L., B. Pot, H. Christensen, G. Rusul, E. O. John, B. W. Wee, K. Muhamad, and M. G. Hasanah (1999), Identification of lactic acid bacteria from Chili Bo, a Malaysian Food Ingredient, Appl. Environ. Microbial. 65, 599-605.
  6. Salminen, S. and A. von Wright (1993), Lactic Acid Bacteria, p13, Marcel Dekker, Inc., New York https://doi.org/10.1186/1476-511X-8-21
  7. Cho, K. H., Y. K. Cho, S. S. Hong, and H. S. Lee (1995), Isolation of microorganism with high productivity and cultivation optimization for lactic acid production. Kor. J. Appl. Microbiol. Biotechnol. 23, 6-11
  8. Antonio Gonzalez-vara, R., D. Pinelli, M. Rossi, D. Fajner, F. Magelli, and D. Matteuzzi (1996), Production of (+) and (−) lactic acid isomers by Lactobacillus casei subsp. casei DSM 20011 and Lactobacillus coryniformis subsp. torquens DSM 20004 in continuous fermentation, J. Ferment. Bioeng.81, 548-552 https://doi.org/10.1016/0922-338X(96)81478-4
  9. Hofvendahl, K. and H. H. Barbel (2000), Factors affecting the fermentative lactic acid production from renewable resources, Enzyme Microb. Technol. 26, 87-107 https://doi.org/10.1016/S0141-0229(99)00155-6
  10. Roukas, T. and P. Kotzckidon, (1998), Lactic acid production from deproteinized whey by mixed cultures of free and coimmobilized Lactobacillus casei and Lactococcus lactis cells using fedbatch culture, Enzyme Microb. Technol. 22, 199-204 https://doi.org/10.1016/S0141-0229(97)00167-1
  11. Bruno-Barcena, J. M., A. L. Ragout, P. R. Cordoba, and F. Sineriz (1999), Continuous production of L(+)-lactic acid by Lactobacillus casei in two-stage systems, Appl. Microbil. Biotechnol. 51, 316-324 https://doi.org/10.1007/s002530051397
  12. Siebold, M., P. V. Frieling, R. Joppien, D. Rindfleisch, K. Schugerl, and H. Roper (1995), Comparison of the production of lactic acid by three different lactobacilli and its recovery by extraction andelectrodialysis, Proc. Biochem. 30, 81-95 https://doi.org/10.1016/0032-9592(95)87011-3
  13. Senthuran, A., V. Senthuran, H. K. Rajni, and B. Mattiasson (1999), Lactic acid production by immobilized Lactobacillus casei in recycle batch reactor: a step towards optimization, J. Biotechnol. 73, 61-70 https://doi.org/10.1016/S0168-1656(99)00133-9
  14. Arasaratnam, V., A. Senthuran, and K. Balasubramaniam (1996), Supplementation of whey with glucose and different nitrogen sources for lactic acid production by Lactobacillus delbrueckii, Enzyme Microb. Technol. 19, 482-486 https://doi.org/10.1016/S0141-0229(95)00147-6
  15. Aeschlimann A., U. von Stockar (1990), The effect of yeast extractsupplementation on the production of lactic acid from whey permeate byLactobacillus helueticus, Appl. Microbial. Biotechnol. 32, 398-402 https://doi.org/10.1007/BF00903772
  16. Olmos-Dichara, A., F. Arnpe, J. L. Uribelarrea, A. Pareilleux, and G. Goma (1997), Growth and lactic acid production by Lactobacillus casei ssp. rhamnosus in batch and membrane bioreactor: influence of yeast extract and Tryptone enrichment, Biotechno. Lett. 19, 709-714 https://doi.org/10.1023/A:1018363520638
  17. Payot, T., Z. Chemaly, and M. Fick, (1999), Lactic acid production by Bacillus coagulans—kinetic studies and optimization of culture medium for batch and continuous fermentation. Enzyme Microb. Technol. 24, 191-199 https://doi.org/10.1016/S0141-0229(98)00098-2
  18. Barakat, R. K., M. W. Griffiths, and L. J. Harris, (2000), IIsolation and characterization of Carnobacterium, Lactococcus, and Enterococcus spp. from cooked, modified atmosphere packaged, refrigerated, poultry meat , J. Food Microbial. 62, 83-94 https://doi.org/10.1016/S0168-1605(00)00381-0
  19. Yin, P., Nishina, N., Y. Kosakai, K. Yahiro, Y. S. Park, and M. Okabe (1997), Enhanced Production of L-(+)-Lactic acid from corn starch in a culture of Rhizopus oryzae using an air-lift bioreactor, J. Ferment. Bioeng. 84, 249-253 https://doi.org/10.1016/S0922-338X(97)82063-6
  20. Kari, K. N., M. Hujanen, M. Leisola, and A. Paiva (2000), Metabolic Engineering of Lactobacillus helveticus CNRZ32 for Production of Pure L-(+)-Lactic Acid, Appl. Environ. Microbial. 66, 3835-3841. https://doi.org/10.1128/AEM.66.9.3835-3841.2000