태양전지용 $CuInSe_2$단결정 박막 성장과 광학적 특성

Growth and optical characterization of $CuInSe_2$ single crystal thin film for solar cell application

  • 발행 : 2002.08.01

초록

$CuInSe_2$ 단결정 박막은 수평 전기로에서 합성한 다결정을 증발원으로 하여, hot wall epitaxy(HWE) 방법으로 증발원과 기판(반절연-GaAs(100))의 온도를 각각 $620^{\circ}C$, $410^{\circ}C$로 고정하여 단결정 박막을 성장하였다. 단결정 박막의 결정성은 광발광과 이중결정 X-선 요동곡선(DCRC)으로 연구하였다. $CuInSe_2$ 단결정 박막의 운반자 농도와 이동도는 van der Pauw 방법으로 측정되었다. 또한 $CuInSe_2$ 단결정 박막의 C축에 수직하게 빛을 쬐었을 때 측정되여진 단파장대의 광전류 봉우리 갈라짐으로부터 결정장 갈라짐 $\Delta$Cr과 스핀 궤도 갈라짐 $\Delta$So(spin orbit splitting) 값을 구하였다. 광발광 측정으로부터 고품질의 결정에서 볼 수 있는 free exciton($E_x$)와 매우 강한 세기의 중성 받게 bound exciton($A^{\circ}$, X) 피크가 관찰되었다. 이때 중성 받게 bound exciton의 반치폭과 결합 에너지는 각각 7meV와 5.9meV였다. 또한 Haynes nile에 의해 구한 불순물의 활성화 에너지는 59meV였다.

The stochiometric mix of evaporating materials for the $CuInSe_2$single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, $CuInSe_2$compound crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $620^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuInSe_2$single crystal thin films measured from Hall effect by van der Pauw method. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $CuInSe_2$single crystal thin film, we have found that the values of spin orbit splitting $\Delta$So and the crystal field splitting $\Delta$Cr. From the photoluminescence measurement on $CuInSe_2$single crystal thin film, we observed free exciton ($E_x$) existing only high quality crystal and neutral bound exciton ($A^{\circ}$, X) having very strong peak intensity. Then, the full-width-at-half-maximum (FWHM) and binding energy of neutral donor bound exciton were 7 meV and 5.9 meV, respectivity. By haynes rule, an activation energy of impurity was 59 meV.

키워드

참고문헌

  1. Appl. Phys. Lett. v.43 no.7 Heterojunction Formation in (Cd,Zn)S/CuInS₂Ternary Solar Cells Richard K. Ahrenkiel;T.R. Massopust https://doi.org/10.1063/1.94474
  2. Applied Physics Letters v.25 no.8 $CuInSe_2$/CdS Heterojunction Photovoltaic Detectors Sigurd Wagner;J.L. Shay;P. Migliorat https://doi.org/10.1063/1.1655537
  3. J. Appl. Phys. v.146 no.4 Analysis of the Electrical and Luminescent Properties of CuInSe₂ P. Migliorato;J.L. Shay
  4. Crystal Research Technology v.16 no.19S1 Luminescence and Impurity States in CuInSe₂ C. Rincon;G. Sanchez
  5. Appl. Phys. Lett. v.46 no.8 Polycrystalline CuInSe₂Photoelectrochemical Cells D. Haneman;J. Szot https://doi.org/10.1063/1.95907
  6. Solid State Commucation v.28 Infrared Lattice Vibration Spectra of CuInSe₂ V. Riede;H. Neumann;Xuan Nguyen https://doi.org/10.1016/0038-1098(78)90836-0
  7. Solar cells v.16 Growth by Directional Freezing of CuInSe₂and Diffused Homojunctions in Bulk Material I. Shih;C.H. Champness;A. Vahid Shahihi https://doi.org/10.1016/0379-6787(86)90073-6
  8. J. Appl. Phys. v.57 no.2 X-ray Photoelectron and Auger Electron Spectroscopic Analysis fof Surface Treatments and Electrochemical Decomposition of CuInSe₂Photo Electrodes David Cahen;P.J. Ireland;L.L. Kazmerdki;F.A. Thiel https://doi.org/10.1063/1.335341
  9. Journal of Crystal Growth v.218 The Optical roperties of CdS Crystal Grown by the Sublimation Method Kwang Joon Hong;T.S. Jeong https://doi.org/10.1016/S0022-0248(00)00491-7
  10. Thin Solid Films v.48 The Optical Properties of CuInSe_2₂Thin Films W. Horig;H. Sobotta https://doi.org/10.1016/0040-6090(78)90332-2
  11. Journal of Crystal Growth v.172 The Characterization of ZnSe/GaAs Epilayers Grown by Hot Wall Epitaxy Kwang Joon Hong;T.S. Jeong https://doi.org/10.1016/S0022-0248(96)00725-7
  12. Elements of X-ray Diffractions B.D. Cullity
  13. J. Appl. Cryst. v.6 Growth of Large CuInSe₂Single Crystals J. Parkes;M.J. Hampshire https://doi.org/10.1107/S0021889873009027
  14. Crystal Orientation manual Elizabeth A. Wood
  15. J. Phys. Soc., Jpn v.20 Electron Radition Damage in Cadium-Selenide Crystal at Liquid-helium Temperrature H. Fujita https://doi.org/10.1143/JPSJ.20.109
  16. Ternary Chalcopyrite Semiconductor: Electronic Properties, and Applications J.L. Shay;J.H. Wernick
  17. Physica v.34 Far-infrared ptical Absorption of $Fe^{2+}$ in ZnSe V.P. Varshni
  18. J. Quantum Electro v.QE7 Infrared Absorption and Luminescence Spectra of$Fe^{2+}$in Cubic ZnS: Role of the Jahn-Teller Coupling D.G.D. Boy;H.M. Kasper;J.H. McFree
  19. Physicalrevie v.B 29 no.4 The of Band-gap Anomaly in ABC₂Chalcopyrite Semiconductors J.E. Jaffe;Alex Zunger