복합 유기 오염물로 오염된 세립질 지반의 Electrokinetic 정화 처리에 관한 연구

Electrokinetic Remediation of Organic Mixture Contaminated Soil

  • 김수삼 (한양대학교 토목환경공학과) ;
  • 한상재 (한양대학교 공학기술연구소) ;
  • 김강호 (중앙대학교 토목환경공학과)
  • 발행 : 2002.08.01

초록

본 연구는 유류 화합물 중 phenol을 대표적인 친수성 유기 화합물로, phenanthrene을 대표적인 소수성 유기오염물로 선정하여 실내에서 인위적으로 오염시킨 세립질 지반에 EK 정화 실험을 실시하였다. 또한, 유기 오염물의 제거효율을 높이기 위해 기존의 양수처리에서 향상기법으로 사용하는 계면활성제를 이용한 향상기법을 연구하였다. 실내 bench 스케일 실험결과, 물에 대한 용해도가 높은 phenol은 비교적 쉽게 제거되었지만, 용해도가 낮은 phenanthrene은 거의 제거되지 않음을 알 수 있었다. 또한, 계면활성제를 적용한 향상기법에서 phenanthrene이 음극부 근처에서 누적되는 지연현상을 보였지만, 농도가 증가할수록 제거효율은 증가하였다. 가동시간을 증가시킨 실험을 통해 시간을 증가시키는 것이 계면활성제의 농도를 증가시키는 것보다 효과적인 것을 알 수 있었다.

In this research, phenol was selected as a representative hydrophilic organic compound and phenanthrene as a representative hydrophobic organic contaminant in petroleum. Fine-grained soil which was manufactured artificially in laboratory was contaminated and EK remediation tests were executed. Also, in order to increase removal efficiency, the surfactant that had been used with improvement technique at the pump-and-treat was used by enhanced method. In the test, the phenol which has high solubility is easily removed, but phenanthrene which has low solubility is almost not. Also, it seems to be the delay phenomenon that the phenanthrene is accumulated near the cathode department vicinity at the enhanced technique which applied the surfactant, but the removal efficiency increases as the surfactant concentration increases. By the test which increases with time, the enhanced method with increasing time is more efficient than the method with increasing surfactant.

키워드

참고문헌

  1. 한국지반공학회논문집 v.15 no.5 계면활성제 탈착촉진법을 이용한 폴리클로네이티드 바이페닐(PCBs)과 페놀류(Phenols)에 의하여 오염된 지반의 정화 방안 박준범;윤현석;김준섭
  2. 대한환경공학회지 v.19 no.9 계면활성제를 이용한 오염된 토양으로부터의 Polycyclic Aromatic Hydrocarbon (PAH)의 세척 염익태;Ghosh, M. M.;안규홍
  3. 대한토목학회지 v.21 no.2-C Electrokinetic 정화기술 적용시 납 오염토에서 간극수 흐름과 간극수압의 발현특성 한상재;김수삼
  4. J. of Geotechnical Eng. v.118 no.11 Phenol Removal From Kaolinite By Electrokinetic Acar, Y. B.;Li, H. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:11(1837)
  5. Annual Book of ASTM Standards v.04.08 Standard Test Method for Particle Size Analysis of Soils ASTM
  6. Chemosphere v.41 Effects of surfactants on extraction of phenanthrene in spiked sand Chang, M. C.;Huang, C. R.;Shu, H. Y. https://doi.org/10.1016/S0045-6535(99)00527-5
  7. Colloids and Surfaces v.151 Surfactants for ground water remediation Harwell, J. H.;Sabatini, D. A.;Knox, R. C. https://doi.org/10.1016/S0927-7757(98)00785-7
  8. ES&T v.29 no.10 Integrated in situ soil remediation technology: The Lasagna process Ho, S. V.;Athmer, C. J.;Heitkamp, M. A.;Brackin, J. M. https://doi.org/10.1021/es00010a011
  9. J. of Hazardous Materials v.55 Department of energy sites suitable for electrokinetic remediation Kelsh, D. J.;Parsons, M. W. https://doi.org/10.1016/S0304-3894(97)00019-8
  10. J. of Environmental Engineering v.126 no.6 Cosolvent-enhanced electrokinetic remediation of soils contaminated with phenanthrene Li, A.;Cheung, K. A.;Reddy, K. R. https://doi.org/10.1061/(ASCE)0733-9372(2000)126:6(527)
  11. Marine Pollution Bulletin v.36 no.12 Petroleum sources in the Westen Gulf of Alaska/Shelikoff Strait Area Page, D. S.;Boehm, P. D.;Douglas, G. S.;Bence, A. E.;Burns, W. A.;Mankiewicz, P. J. https://doi.org/10.1016/S0025-326X(98)00085-X
  12. Applied Catalysis B: Environmental v.30 TIO2-photocatalyzed degradation of phenol and ortho-substituted phenolic compounds Peiro, A. M.;Ayllon, J. A.;Peral, J.;Dome, X. https://doi.org/10.1016/S0926-3373(00)00248-4
  13. J. Irrig. Drainage Div. v.116 Adsorption desorption and transport of pesticides in groundwater: A Critical Review Sabatini, D. A.;Austin, T. A. https://doi.org/10.1061/(ASCE)0733-9437(1990)116:1(3)
  14. Chemistry for environmental engineering(4th Edition) Sawyer, C. N.;McCarty, P. L.;Parkin, G. F.
  15. Topical Report for Tasks Electrokinetic modeling Shapiro, A. P.
  16. SW-846 Manual; Method 5515 USEPA
  17. Hazardous wastes: Sources Pathways Receptors Watt, R. J.