대형지진시 다층지반의 지진응답해석

Seismic Response Analysis at Multi-layered Ground During Large Earthquake

  • 발행 : 2002.08.01

초록

본 논문에서는 점탄-점소성 구성모델을 다층지반에서의 대형지진 발생시의 조건에 적용하기 위해 일본 고베 포트아일랜드에서 발생한 1995 Hyogoken Nanbu 지진에 대한 지진응답 해석을 수행하였다. 지진응답해석 결과 점성토의탄-점소성 모델과 점탄-점소성 모델로 계산된 가속도 기록은 포트아일랜드에서 계측된 가속도 기록과 거의 일치함을 알 수 있었으며, 점성토 지반 부근에서 점탄-점소성 모델과 탄-점소성 모델은 미세하게 다른 거동 특성을 나타내어 점소성 모델의 타당성을 확인하였다. 따라서 동적 점탄-점소성 구성모델은 대변형률 영역에서 점성토의 소성변형을 유발하는 대형 지진 등의 발생시 점성토의 증폭 및 감쇠특성의 파악을 위해 적용가능한 모델임이 입증되었다.

In the present study, in order to apply a cyclic viscoelastic-viscoplastic constitutive model to multi-layered ground conditions during large earthquake, the numerical simulations of the 1995 Hyogoken Nanbu Earthquake at Port Island, Kobe, Japan, were performed by the seismic response analysis. From the seismic response analysis, it was found that the acceleration calculated from the cyclic elasto-viscoplastic model and cyclic viscoelastic-viscoplastic models for clay was in close agreement with the recorded accelerations at the Port Island down-hole array, and the cyclic elastic-viscoplastic and viscoelastic-viscoplastic constitutive models showed little different behavior characteristics near clay layer. Thus, the propriety of viscoplastic model for clay was convinced. Therefore, it can be concluded that a cyclic viscoelastic-viscoplastic constitutive model can give a good description of the amplification and also it showed accurate damping characteristics of clay during large event which induces plastic deformation in large strain range.

키워드

참고문헌

  1. 한국지반공학회논문집 v.17 no.4 액상화 발생후 과잉공극수압 소산 모델링 김명모;박영호
  2. 대한토목학회논문집 v.21 no.5-C 점성토의 점탄성 및 점소성 거동 특성 김용성
  3. 대한토목학회논문집 v.22 no.1-C 동적 점탄-점소성 구성모델을 이용한 다층지반의 지진응답해석 김용성
  4. 한국지반공학회논문집 v.17 no.5 변형률제어 진동삼축시험법을 이용한 석탄회가 혼입된 모래시료의 액상화 평가 이병식;정경순
  5. Jour. of Geotechnical and Geoenvirnmental Engineering v.126 no.7 Numerical Simulation of Liquefaction Induced Deformations Arulanandan, K.;Li, X.S.;Sivathasan, K. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:7(657)
  6. J. of Applied Physics v.33 no.4 Mechanics of deformation and acoustic propargation in porous media Biot, M.A. https://doi.org/10.1063/1.1728759
  7. J. of Geotech. Engineering v.104 no.GT3 Liquefaction Analysis of Horizontally Layered Sands Ghaboussi, J.;Dikmen,S.U.
  8. Proc. 6th Int. Conf. on Numerical Methods in Geomechanics Two-Dimensional Nonlinear Response Analysis During Earthquakes Based on the Effective Stress Method Kanatani, M.;Nishi, K.;Kawakami, M.;Ohmachi, M.
  9. Ph. D. Dissertation Multi-Dimensional Liquefaction Analysis Method and Its Application Kato. M.
  10. Ph. D. Dissertation A Cyclic Viscoelastic-Viscoplastic Constitutive model for Clay and Its Application to Liquefaction Analysis Kim, Y.-S
  11. Earthquake Specra v.4 no.4 The Mexico Earthquake of Setember 19, 1985-Behavior of Building of Foundations in Mexico City Mendoza, M.;Auvenet, G. https://doi.org/10.1193/1.1585500
  12. Proc. 4th Int. Symp. on Numerical Models in Geomechanics v.1 A Cyclic Elasto-Viscoplastic Constitutive Model for Clay Based on the Non-Linear Hardening Rule Oka, F.
  13. Proc. 10th Int. Symp. on Computer Methods and Advances in Geomechanics v.2 A Cyclic Viscoelastic-Viscoplastic Model for Clay and Its Application to Liquefaction Analysis of Ground Oka, F.;T. Kodaka;Y.-S. Kim.
  14. Applied Scientific Research v.52 FEM-FDM Coupled Liquefaction Analysis of a Porous Soil Using an Elasto-Plastic Model Oka, F.;Yashima, A.;Shibata, T.;Kato, M.;Uzuoka, R. https://doi.org/10.1007/BF00853951
  15. Geotechnique v.49 no.5 A Cyclic Elasto-Plastic Constitutive Model for Sand Considering a Plastic-Strain Dependence of the Shear Modulus Oka, F.;Yashima, A.;Tateishi, A.;Taguchi, Y.;Yamashita, S. https://doi.org/10.1680/geot.1999.49.5.661
  16. Jour. of the KGS v.16 no.3 Disturbed State Modeling for Dynamic Analysis of Soil-Structure Interface Park, I-J.;Yoo, J-H.;Kim, S-I.
  17. Jour. of KGS v.16 no.3 Liquefaction of Embankments on Sandy Soils and the Optimum Countermeasure against the Liquefaction Park, Y-H.;Kim, S-R.;Kim S-H.;Kim, M-M.
  18. Computer Methods in Applied Mechanics and Engineering v.30 no.1 Nonlinear Transient Phenomena in Saturated Porous Media Prevost, J.H. https://doi.org/10.1016/0045-7825(82)90052-4
  19. Proc. 7th Int. Symp. on Computer Methods and Advances in Geomechanics v.2 FEM-FDM coupled liquefaction analysis of a fluid-saturated ground Shibata, T.;Sato, T.;Uzuoka, R.;Oka, F.;Yashima, A.;Kato, M.
  20. Engineering Geology v.56 Time-dependent ground motion amplification characteristics at reclaimed land after the 1995 Hyogoken Nambu Earthquake Sugito, M.;Oka, F.;Yashima, A.;Furumoto, Y.;Yamada, K. https://doi.org/10.1016/S0013-7952(99)00139-8
  21. Proc. 11th World Conference on Earthquake Engineering Three-Dimensional Liquefaction Analysis Method and Array Record Simulation in Great Hanshin Earthquake Taguchi, Y.;Tateishi, A.;Oka, F.;Yashima, A.
  22. Soil Mechanics-Transient and Cyclic Loads Soils and Other Saturated Media Under Transient, Dynamic Conditions, General Formulation and the Validity of Various Simplifying Assumptions Zienkiewicz, O.C.;Bettes, P.
  23. Int. J. for Numerical and Analytical Methods in Geomechanics v.8 Dynamic Behavior of Saturated Porous Media; The Generalized Biot Formulation and Its Numerical Solution Zienkiewicz, O.C.;Shiomi, T. https://doi.org/10.1002/nag.1610080106
  24. The Finite Element Method(4th Edition) v.2 Zienkiewicz, O.C.;Taylor, R.L.