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ABSTRACT

This paper deals with efficient algorithms for computing a product of n distinct powers in a group(called multi-exponentiation).
Four different algorithms are presented and analyzed, each of which has its own range of n for best performance. Using
the best performing algorithm for » ranging from 2 to several thousands, one can achieve 2 to 4 times speed-up compared
to the baseline binary algorithm and 2 to 10 times speed-up compared to individual exponentiation.

Keyword : Multi-exponentiation, Digital signatures, Batch verification

| . Introduction exist much faster algorithms for exponenti-
ation to a fixed base (3,4].

Evaluating exponentiation in a group is On the other hand, it is often required
the most time-consuming operation in most in many cryptographic protocols to evaluate
public key cryptosystems, e.g., modular ex- a product of multiple powers in a group
ponentiation in the RSA and Diffie-Hellman/ (called multi-exponentiation). Verification of
ElGamal systems and scalar multiplication in discrete log-based signatures is the most
elliptic curve cryptosystems. Fast exponen- common example @ Individual verification
tiation algorithms thus have been studied requires two-term exponentiation and batch
extensively in past years and a number of verification (5,6) requires z-term exponentiation
such algorithms have been proposed. For for quite large n. There exist several efficient
example, the sliding window algorithm is algorithms for two-term exponentiation (7,8),
the most popular algorithm for general but not much research has been done for

(1.2

exponentiation in any group and there efficient algorithms for general multi-exponenti-
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ation with large =.

In this paper, we present and analyze
several efficient algorithms for n-term expo-
nentiation for arbitrary large ». The presented
algorithms include the sliding window al-
gorithms with/without signed encoding and
algorithms using the precomputation tech-
niques of {3) and (4). Each of the algorithms
is shown to have its own range of n with
relative strength. We also show that with
signed encoding and Montgomery’s simul-
taneous inversion technique (9, Algorithm
10.3.4]), these algorithms can be significantly
improved in elliptic curve groups. Finally,
we demonstrate the power of multi-exponenti-
ation with application to batch verification
of (modified) DSA signatures.

Il . Batch Verification of Exponentiation

Let G be a {(cyclic) group of order ¢=|G
and g; (0<i{(n) be elements of order ¢ in

G. Given a collection of triplets (x;, &:, v:)
(0<i{n) such that x;=Z, and g;, v;=G, we
want to verify that each triplet (x;, g, ¥:)
satisfies the exponentiation function y;=g}'
in G.

A naive approach to doing such verification
is to evaluate each exponentiation g and
compare the result with y;, which requires
n exponentiations. However, there is a much
better approach: the probabilistic batch
verification (5) (called the small exponent test
in (6)). In this probabilistic batch verification,
we randomly pick integers ¢; (0<i{n) over
the interval (0,29 and test the following
equation for equality:

t[;yf'= :t[;gf', (1)

where z;=cx; mod ¢. The probability of error

in this probabilistic batch verification is

shown to be at most 27 (6],

obtain a desired level of confidence by choosing
a appropriate value of ¢. In most appli-

S0 we can

cations, #=30~60 would suffice.

If the exponentiation function has the
same base g(i.e., g;=g for all ¢s), the right-
hand side of Equation (1) is simplified to
a single power g°, where z=2cx; mod gq.
In this case, the Bucket Test in (6] can
further speed up the above small exponent
test, but it cannot be used for batch verifi-
cation of general exponentiation with distinct
bases.

It can thus be seen that in either case
efficient multi-exponentiation is a key to
the performance of batch verification of
modular exponentiation. The goal of this
paper is to develop such algorithms. From
now on, we will focus on efficient evaluation
of the following form of general multi-
exponentiation:

-1
Y= :onf’, where ¢; € [0,2°) (2)

. Algorithms for Multi-Exponentiation

In this section, we will present six algo-
rithms for multi-exponentiation. We first
describe the basic binary algorithms that
can be used as a baseline for performance
comparison. Then four algorithms are pre-
sented to speed up the naive binary algorithms:
sliding window algorithms using unsigned/
signed encoding, and algorithms using the
precomputation techniques of Brickell et
al. (3] and Lim-Lee (4]

Throughout this paper, we will use the
letters M, S and I to denote the computing
complexity of multiplication, squaring and
inversion, respectively, and the letters »
and # to denote the complexity ratio of S
over M and I over M, respectively, i.e.,
y=S/M, u=1/M.
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3.1 Binary Algorithms

Let ¢;= gci' 27 be the binary representation
of ¢;,where ¢;;{0,1}. The binary algorithm
to compute Y in Equation (2) carries out
the following iteration ¢ times, starting
with Y=1 and running j=¢—1 down to 0:
multiply ¥ by all /s such that ¢;;=1 and
then square the result Y. Obviously, this
algorithm requires 0.5##1 multiplications and
t—1 squarings on average. With optimal
signed encoding for each exponent(e.g.,
see [10)), the expected number of multi-

n(t+ 1D —1 at

plications can be reduced to 3

the cost of ¢ more squarings. This performance
can be obtained by computing Y as

re(T0)- (1)

where ¢/ and ¢ respectively denote the
positive and negative parts of c¢; after optimal
signed encoding(so, ¢;=c?—c/"). Note that
optimal signed encoding can reduce the
probability of a bit being nonzero to 1/3
on average with at most 1- bit expansion.

The following theorem summarizes the
performances of the unsigned binary algo-
rithm(denoted by Algorithm BU) and the
signed binary algorithm(denoted by Algorithm
BS) for computing n-term exponentiation.

Theorem 1 (Algorithms BU/BS)
a) The expected number of multiplications
required by Algorithm BU is given by

Colm =2 =1+ A=),

b) The expected number of multiplications
required by Algorithm BS is given by

CBs(n;t)=—n(%ll—l+27t+#.

3.2 Sliding Window Algorithms

The window-family algorithm will be a
better way to evaluate n—term exponentiation
with small » (#=2 to 4). Among many variants,
we focus on the window algorithm using
independently sliding windows'™, since it
is most efficient for application to multi-
exponentiation. This window algorithm uses
a distinct sliding window for each exponent
instead of an ordinary simultaneous window.

Let w be the window size in bits and &;
be the number of windowed values for c;.
Then we can express each exponent c¢; as

ki—1 ;
Ci= E) C,‘_,’Z v,

where ¢, ;s are odd and 0<c¢;;<2". Let ¥Y;,'s
be the precomputed values for y; given by

Yi'jzini—l for 1S]£2 w—l.

Then, Equation (2) can be rewriten as

(3)

7
—17 k=1 gt
= 1l ( 28 Yz;(c.,,ﬂ)/z)

Now the right-hand side of Equation (3)
can be computed using the ordinary square-
and-multiply algorithm as shown in Algorithm
WU.

Algorithm WU: Sliding window Alg.
INPUT: y; ¢; (0<im), G
=1
OUTPUT: v= {157 in G
0: encoding: ¢;=(cy;,1;)
1: for i=0 to »—1 step +1
2 Yii— v, T < y?
30 Vi e Yoo T (2<i<2"7)
4: pos — max{l;,} =
5

1Y = I Yic,oon
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6: while ( pos>0)

7 pos < pos—1

8: Y « Y2

9 V<Y I“l;[myi,(c,»‘,ﬂ)/z

10: return Y

The precomputation stage (steps 1 to 3)
requires (2¥7! —1) multiplications and 1
squaring for each exponent, and the main

computation part (steps 4 to 9) requires
t
w+1

cations for each exponent. Theorem 2 below
summarizes the performance of Algorithm
WU:

(t—1) squarings and about multipli-

Theorem 2 (Algorithm WU)

a) The expected number of multiplications
required by Algorithm WU with window
size w is given by

CWU(n;t,w)=< wj-l +2w‘1—-1+7)n
+At—1)—1.

The algorithm also requires a temporary
storage for 2“ '» precomputed values.
b) The optimal window size w,, only depends
on t. The range of ¢ for which w,; is
optimal can be determined from the
inequality C w7 t, w o) < C ufm {,w g+ 1)

<2 w',,,—l(w opt+ l)(w 0pt+ 2) .

This inequality gives the following table
for optimal window sizes depending on
the range of ¢, where each pair (‘Zma.
w,y) means that w,, is optimal up to
tma (from the previous value):

W opt 2 3 4 5 6
! max 24 80 240 672 | 1792

We next consider how to use signed encoding

in the above sliding window algorithm. Since
signed encoding requires expensive multi-
plicative inversion, we want to minimize
the number of inverses required. For this,
we split each sign-encoded exponent into
positive and negative parts as in Algorithm
BS. Suppose that each exponent ¢; is sign-
encoded with window size w. We can then
express each c; as

k=1
1i; I i
c;= ,chf»fz J o IEZHCJ;)Z :__];mcr’r{jz .

where ¢;,;/s are odd and 0<lc;;I<2*"', and
k' and k" respectively denote the set of
indices for positive and negative windowed
values. Equation (2) can then be expressed
as

—1 C“ _1 Cﬁ»zlv:

y= 1= g(gyi )
= ety Tl

1;[0( fgn"yi )

This equation enables us to use signed
encoding in the sliding window algorithm
at the cost of one inversion and at most
(t-w) squarings. Let WS be the algorithm to
compute the right-hand side of equation (4).
Note that the number of nonzero windows
in each sign-encoded exponent is about

t+1
w2

will perform better than Algorithm WU only
if the cost reduction (i.e., the the number
of multiplications reduced) due to the signed
encoding is greater than the increased cost
of one inversion and (¢—w) squarings. This
would be the case for large »n. The following
theorem summarizes the performance of
Algorithm WS:

on average. Therefore, Algorithm WS

Theorem 3 (Algorithm WS)
a) The expected number of multiplications
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required by Algorithm WS with window
size w is given by

Cus(mt, w)= (ﬁ+2w_l+ 7*1)11

+7(2t—w)+u—1.

The algorithm also requires a temporary
storage for 2 * 'nprecomputed values.
b) The optimal window size w,s mainly
depends on ¢. Given #, the range of ¢ for
which w,, is optimal can be determined
by solving Cus(# ¢, wep) < Cus (1 ¢, o+ 1)

tS(Z ol _ Jn’—)(wo,,,+ 2w oyt 3)—1

=2 w"”'dl(wm-}- 2w pt3)—1

where the latter approximation holds
for n>(wa)? (not that we always have
¥{1). This inequality gives the following
table for optimal window sizes for an
interesting range of #

Wow | 2 3 4 5 6
tmx | 39 | 119 | 335 | 895 | 2303

3.3 Algorithm Using Lim-Lee’s Precomputation
Technique

It is quite natural to come up with
Lim-Lee’s precomputation technique [4] for
efficient n-term exponentiation(note that
this technique is a natural extension of, so
including, the simultaneous window algorithm,
often called Shamir’s trick for »=2). Basic
idea of Lim-Lee's technique with parameters
(h,w) is to partition the set of » powers
into 2 blocks of size w, make a distinct
precomputation table for simultaneous window
of size 1 for each block, and then apply
the binary algorithm to the % blocks of
powers.

=1 )

More formally, let ¢;= ZE) c¢;;2’ be the binary

representation of ¢; and express Equation (2)
as

()"

where k= [—Z) 1. Next, precompute and store
the products of all possible combinations of
v;/'s in each &-th block of size w as

w—1
.
Yk,e= Ho y);w+jv
j=

where 0<k<h and 0<e=-e,.=€,¢<2”. Then
the right-hand side of equation (5) can be
computed as

_ -1 9/
Y=l (iﬂo Yk.e(k)) ,

where e(A) = c(o+nu-17""" Chu+1,jCh;. The de-

tailed algorithm 1is depicted below as
Algorithm LL.

Algorithm LL: Lim-Lee’s algorithm
INPUT: y; ¢; (0<i<n), G

OUTPUT: v= Eyf' in G

1: for £#=0 to k—1 step +1
for e=0 to 2¥—1 step +1

—1 . w—1 o
e= Z‘be’gz' Yk,e‘” iI:—IOyklw-f-i
1Y <1
: for k=0 to 2—1 step +1

2

3

4

5

(k+Dw—1 )

6: e<— 2 ci-27™
i=kw

7 Y <Y -Y,,

8: for j=1t—2 to 0 step -1
9: Y <Y

10: for k=0 to A—1 step +1
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. e+ w1 o for optimal window sizes for an inter-
11: e ¢i;2 : .
iSFw esting range of #
12: Y<~Y- Yk,e
13: return Y

It is easy to see that the precomputation
stage (steps 1 to 3) requires (2“—w—~1)h
multiplications and the main computation
(steps 4 to 12) can be done in (¢—1)
squarings and at most (#—1) multiplications.
For the average performance, we need to
consider the expected number of all-zero
¢'s (see [(4) for details). The following
theorem summarizes the performance of
Algorithm LL:

Theorem 4 (Algorithm LIL)
a) The expected number of multiplications
required by Algorithm LL with blocking
factor w is given by

Crnmt, w)=( 2°—1 t+2w—w—1>h

ZW
+ 2;71 12— r~ 24 Ht—1),
where k= [—Z’Z) and 7=# mod w if

mww, and w==n (s0o k=1, r=0) if »<w.
The algorithm also requires a temporary
storage for 2”[ —Z) 1 precomputed values.
b) The optimal value of blocking factor w,
w oz, mainly depends on t. Given %, the
range of ¢ for which w,, is optimal
can be determined from the inequality
Crolm t,w )< CCrp( t,woy+1). In parti-
cular, when » is a multiple of both
wo and wo,+1, one can obtain the

following simple formula:

14 (w gp—1)2
1= (wop+2)2 ~ ™D

<

This inequality gives the following table

Wopt| 2 3 4 5 6 7 8
Pmax| 10 | 24 | 60 | 144 | 342§ 797 (1828

Note that the average performance of
Algorithm LL is slightly worse when » is
not a multiple of w. So, it is always pre-
ferable to choose the batch size » as a
multiple of w,; whenever possible.

3.4 Algorithm Using Brickell et al.’s Pre-
computation Technique

Another way to speed up wn-term ex-
ponentiation (in particular, for large ») is
to use the basic scheme of Brickell et al.’s
precomputation method [(3). Suppose that
for a fixed window size w each exponent c;
is represented in base 2“ as ¢;= gc,’,jzf“’,

where A= [—157 T and 0<c¢;;<2”. Then we can
express Equation (2) as

n—1 k=1

n—1 h—1 " »
e H( T e

i= 7=0

where Y;= :i;[;yf"’. Now we can compute each
Y; using the basic scheme in (3) and the
right-hand side of Equation (6) using the
repeated square-and-multiply algorithm. See
Algorithm BG for details.

Algorithm BG: Brickell et al.’s algorithm
INPUT: y; ¢; (0<i<n), G

n—1
OUTPUT: Y= Lgﬁ‘nlc

Y <1
:for j=h—1 to 0 step -1
T~z Il w

¢, ;j=2"—1
for k=2"—-2 to 1 step -1
T—7- II %

Ot W DN =
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6: Z— Z-T

7: Y—~Y-Z

8: for k=0 to w—1 step +1
9: Y « Y*

10t return Y

Note that each c¢; is grouped by w bits
from the LSB for simplicity, it would be
better to do the grouping starting with the
MSB, since then the number of squarings
can be a little bit reduced when 0 mod
w. The following theorem summarizes the
performance of Algorithm BG:

Theorem 5 (Algorithm BG)
a) The expected number of multiplications
required by Algorithm BG with base

2" is given by

Cpelmt, w)= ( 2°—1 n+2’”—2)h

2w
+<%+2’—2)6(r)
+ A t—w)—1,

where k= | L | ,
w

8(r)=1if 0 and &») =0 otherwise.
b) The optimal window size w. mainly

r=¢t mod w, and

depends on #. Given ¢, the range of = for
which w .y is optimal can be determined
by C e t, wop) < C pe( 95 ¢, wou+1).In par-
ticular, when ¢ is a multiple of both
wy: and wut+1, one can obtain the
following simple inequality:

(24 (Wopr— 12"Vt = ywop wope + 1)
1= (ot 2)2 7" )t
2+ (wop— 102"
1 (ot 2)2 (ot 1)

~
~

where the latter approximation holds
for £ (w,m?.

The average performance of Algorithm

BG is slightly worse when ¢ is not a multiple
of w. Note however that the bit-length ¢ of
exponent is a security parameter of a system
and thus cannot be chosen arbitrarily. Thus
the optimal size of w should be determined
for a given ¢ For example, one can obtain
the following table for ¢=160.

Wor | 2 3 4 5 6
Mo | 11 25 61 | 148 | 324
W | T 8 9 10 11
Mo | 776 | 1892 | 3826 | 12269 | 23513

We can obtain a more general version of
Algorithm BG using some on-line precompu-
tation. For example, suppose that the =
vlaues, z;=3? for 0<i{n, are on-line precom-
puted. Then, Equation (6) can be rewritten as
h=1 =1 2%

Y: H ( H v ”Zz' -.1+1)
j=0.j+=2\ i=0
h—1

= II (v;z)¥, @)

j=0,/+=2

n—1 n—1
where Y;= _Hoyf"’ and Z,= Hoyf"’“. Note
i= i=

that using Equation (7) one can reduce the
number of multiplications required in step 6
almost by half at the cost of wr squarings
for on-line precomputation. Therefore, Using this
equation may result in better performances
when ¢ is large and # is relatively small.

In general, Algorithm BG using v pre-
for 1<7<v) has the following performance
formula:

. _({2*=1, 2"—1
Cplmt, w,v) ( e h+ % )n
+HQ2—2)+©2" =2 &w)
+ At~ w+ vw(n—1))—1,

where 0<wh, k= L—;}J ,

, h
K=l v+1

w =w otherwise. Note that Cg(t, w,0)

r=t mod w,

] and w' =7 if k=0 mod v+1,
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(Table 1) Range of = giving best performances
in Algorithm BG for given v and ¢
(a~ b denotes a<n<b)

¢ Yopt| =>4 3 2 1 0
60 2~3 | none | 4~8 ~31 32~
160 2~9 ~18 ~38 | ~168 | 169~
256 | 2~14 | ~30 ~91 | ~405 | 406~
512 | 2~65 | ~91 | ~270 | ~1984 | 1985~
768 | 2~78 | ~318 | ~635 | ~4855 | 4856~
1024 [2~239 | ~437 | ~1346 |~10696|10697~

=Cpe(mt,w).

To achieve the best possible performance
for given » and ¢, we have to choose optimal
values for w and ». The value of », which
determines the amount of on-line precom-
putation, may be quite large for small =
and large t. (Table 1) shows the range of =
according to the optimal values of v for
some interested values of ¢£. For example,
when =160, using nonzero v is always ad-
vantageous if #<168. Obviously, the performa-
nce advantage with on-line precomputation
becomes larger as ¢ increases.

V. Performance Comparison

Let us compare the performances of Al-
gorithms WU, WS, LL and BG. First note
that the optimal window size w, in Al-

gorithms WU and WS only depends on the
bit-length ¢ of exponents and the optimal
blocking factor w,, in Algorithm LL depends
only on ¢ assuming that =0 mod w,. Thus,
in these three algorithms, for given ¢ we
can express the cost function in terms of
n alone. For example, for t=160, we have
the following simple formulas:

Cwu(7160,4)=239.8n+126.2,
Cus (1,160,4) = 34.63n+251.8+ u,

160(1—-277)
LL(%160,6)={ +2"—n+125.2, ifn<6
35.74n+126.2if =0 mod 6.

Here we took y=S/M=0.8. Note that if our
objective is to verify the equality Y=A B!,
then we can check the equality by Y- B=A
without computing the multiplicative inverse.
So, for simplicity, let us take u=I/M=0
in Algorithm WS and denote the resulting
algorithm as Algorithm WS™.

On the other hand, the optimal window
size in Algorithm BG depends on both #=
and ¢. For example, for =160, we can obtain
the following optimal performance formul-
as according to the range of =:

C pe(%160,6,1) =31.33n+937.4(93 <»<168),

C pe(%160,6,0) = 26.537+ 1748(169 <n<324),

C pe(1160,7,0) = 22.81n+ 2955(325 <#<776),

C 5e(1160, 8,0) = 19.922+ 5200(777 <#<1893),

C 5a(%160,9,0) = 17.967 + 8916(1894 < »< 3825),

C 5e(%160, 10, 0) = 15.98% + 16470(3826 <#<12270)

Using the above formulas derived for
t=160, we can determine the best algorithm
according to the batch size ». We can derive
similar equations for other values of &
(Table 2) shows the best performing al-
gorithms and their range of » for some
selected values of . Note that we almost
always have the same order of preferred
algorithms as » increases: WU, LL, WS*,
BG (in fact, there are some fluctuations
in the order of Algorithm LL and WS¥,
though neglected in the table).

(Table 2) Best performing algorithms for given
n and ¢

Best Alg.| WU LL ws* BG
=60 | 2<n<4 | 4<n<60 | 160<n<72 | T2<n
t=160 | 2=x<5 | 5<n<120 | 120<#<186 | 186<n
t=256 | 2<n<5 | 5<n<240 | 240<n<252 | 252<n
=512 | 2<n{6 | 6<n<420 none 420<n
=768 | 2<n<{6 | 6<nd456 none 456<n
t=1024 | 2=#n<6 | 6=n<608 none 608<n
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(Table 3) No. of multiplications(unit : 1000) re~
quired for multi-exponentiation for = 160

BU/
Best

0.29] 0.21] 0.32| 0.25| 0.27| 1.38
053] 0.33] 0.43} 0.31] 0.46| 1.71
30 2.53] 1.32] 1.29| 1.20] 1.62| 2.11
60 493| 2.51| 2.33] 2.27| 2.70] 2.17
90 7.33| 3.71 3.37| 3.34] 3.75| 2.19
120 | 9.73] 4.90| 4.41| 4.42| 4.70] 2.21
150 | 12.13| 6.10| 5.45] 5.49| 5.64| 2.23
300 | 24.13| 12.07| 10.64| 10.85| 9.71| 2.49
600 | 48.13| 24.01| 21.03| 21.58| 16.64] 2.89
1.2K| 96.13| 47.89| 41.81| 40.03] 29.11| 3.30
3K ]240.13{119.53(104.15|107.38| 62.79| 3.82
6K |480.13|238.93|208.05{214.63| 112.37} 4.27

n BU | WU | W3* | LL BG

For more exact quantitative comparison,
we provide performance figures of the four
algorithms in (Table 3] for some selected
values of », where the performance of the
binary algorithm is also tabulated as it
can serve as a base line for the comparison.
The table shows that with the best perfor-
ming algorithm for given » we can achieve
about 2 to 4 times speed-up(for the range
of n from several tens to several thousands)
compared to the binary algorithm.

V. Further Speedup in Elliptic Curve Groups

Basic operation in elliptic curve arithmetic
is addition and subtraction between elliptic
points, and computation of an integer multiple
of a given point in this additive group,
called scalar multiplication, corresponds to
modular exponentiation in multiplicative
groups. So, multi-exponentiation of Equation
(2) can be written using additive notation as

Y= gciY,»,

where Y,'s are base points and ¢,’s are scalar

values(integers). A distinct feature of ellip-

tic curve arithmetic, compared to modular
arithmetic, is that we can freely use addition/
subtraction chains since the cost for elliptic
subtraction is almost the same as the cost
for elliptic addition. This enables us to improve
the algorithms presented in Sect.IIl when
used for elliptic curve arithmetic. Further-
more, we can take advantage of the high
degree of parallelism in Algorithms LL and
BG to further improve these algorithms.

In this section, we will use 7 to denote
the performance ratio of elliptic doubling-
to-addition, i.e., y=D/A.

4.1 Improvement Using Signed Encoding

A basic algorithm for scalar multiplication
in elliptic curve groups is the signed binary
algorithm, denoted by Algorithm BS-EC.
From Sect.IIl.1, we can easily see that the
expected number of elliptic additions required
by Algorithm BS-EC is given by

CBS—Ec(n;t)=J—)‘n t;—l — 1+ 7.

Similarly, we have the following performance
formula for Algorithm WS-EC:

Cus—ecnmt, w)= (%4-2”_14-7—1)71
+At—w) —1

The storage requirement and optimal window
sizes for Algorithm WS-EC are the same
as those given in Theorem 3.

We can also improve Algorithm BG using
signed encoding. Suppose that each multiplier
¢ is represented in base 2 as in Sect.III.4.
Since a w-bit number c¢;,; can always be
encoded into an integer c¢;; whose absolute
value is less than or equal to 2*7!, we can
encode the entire ¢ as

sl
= ,§) Ci,,zlw,
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where h= [%l land 0<|c;j<2*7'. We

can easily derive the expected number of
elliptic additions required by Algorithm
BG-EC from the corresponding fornula in
Sect.I11.4 :

2¥ 27
+HET =) 4+2Y -2

CBG~EC(n; £, w)= (__Zw_—l_ h+—27_—1)n

+ W+ 1— wt+ vuw(n—1)),

where k= L—w~J, r=t+1 mod w,
W=1—2—1, 0<wh and w=r if k=0
v+1

mod v+1 and w' =w—1 otherwise. Given ¢
and v, we can find optimal window sizes
depending on = as before.

4.2 Further Improvement Using Simultaneous
Inversion

Another speedup technique in elliptic
curve arithmetic is to take advantage of
parallel computation. Suppose that it is
allowed to add or double m elliptic points
in parallel and suppose that we do the
arithmetic in affine coordinates. Then we
can use the simultaneocus inversion trick
due to Montgomery (9, Algorithm 10.3.4) to
reduce the number of inversions required
for m elliptic additions/doublings to only
one at the cost of 3 field multiplications
per elliptic addition/doubling. Using this
technique, we can achieve about 20 to 30%
speedup in Algorithms LL-EC and BG-EC,
thanks to the very large degree of par-
allelism in these algorithms. For example,
on-line precomputation 2*Y; (0<i{(#n) in Al-
gorithm BG-EC can be performed in affine
coordinates only using one inversion, (52—3)
multiplications and 2» squarings. Thus, if
the degree of parallelism (# in the above
example) is quite large, we can perform an

elliptic addition only using about 5 multi-
plications and 2 squarings. This is the
fastest known method for elliptic addition.
Note that elliptic curve arithmetic in
projective coordinates usually yields better
performances than elliptic curve arithmetic
in affine coordinates. However, if it is possible
to do parallel execution of a number of elliptic
additions/doublings as discussed above, it
is almost always more efficient to do elliptic
curve arithmetic in affine coordinates.

V. Batch Verification of Digital Signatures

There are a number of cryptographic
applications requiring multi-exponentiation:
e.g., (batch) verification of ElGamal-type
signatures, elliptic scalar multiplication using
Frobenius expansion, exponentiation in GF(g"),
etc. Batch verification of ElGamal-type
signatures is particularly interesting, since
we can substantially improve the performance
of a variety of applications using digital
signatures. There have been proposed and
analyzed efficient batch verification algorithms
on a variant of DSA signatures (5,6]. But
there is no algorithm presented for efficient
evaluation of multi-exponentiation required
for the batch test.

A DSA signature on a message m, generated
by a secret/public key pair (x, y=g"mod #),
consists of (»,s) computed by A=g* mod p
(k€Z,), r=Amod g and s=#k '(m+ ) mod ¢
(p,q primes s.t. glp—1 and /=1lgl=160, g an
element of order ¢). Verification of the sig-
nature can be done by checking the equality
r=(g%"® mod p) mod ¢, where a=ms *mod ¢
and b=rs 'mod ¢. Since a batch verification
technique cannot be applied to DSA sig-
natures in their original form, Naccache
et al. [5) considered a slight modification:
send (4,s), instead of (7,5, as a signature
and convert the signature back to its
original form after successful verification.
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Now, let us consider batch verification
of the above modified DSA signatures. First,
consider » signatures, {(4;,s)} (0<i#n), ge-
nerated by the same signer with a signing
key pair (x,y). For convenience, we will denote
the batch instance by {(4;, a; 8} (0<i<n),
where a;=m;s; ' mod ¢ and b;=7;s; ! mod g¢.
Then the batch verification equation is
given by

n—1
I=IO A7'=g"" mod p, (8)

n—1 —1
where a= 20 cia; mod g, b= Z}cibimodq and
“~ =

¢;/s are integers randomly chosen over the
interval [0,2°). It is proved in (5.6) that
the error probability of this test is less
than 2 7. So, t=30~60 would be sufficient
in most applications. The left-hand side of
equation (8) can now be efficiently computed
using one of the algorithms presented in
Sect.IIl according to the batch size n.
Note that the bucket test in (6] can sig-
nificantly improve the above small exponent
test, in particular for large ». But our
multi-exponentiation algorithms can further
speed up the computation required by the
bucket test.

On the other hand, it is much more likely
in most applications of digital signatures
that a batch instance consists of digital
signatures from different signers. So, we
next consider a batch instance consisting
of » signatures, {(4;,a; b))} (0<i{n), gene-
rated by » distinct signers, where each signer
{ possesses a signing key pair (x;,v). In
this case, the batch verification equation
becomes

n—1 n—1 ,
I_:Hollf‘=g“ Z_IJOy,-b’ mod , (9)

=1
where a= ca;mod q, by =c;b;mod g. Now,
;

since each &/ is /=Il¢l=160 bits long, the
main computational load is to evaluate multi-
exponentiation in the right-hand side of
equation (9) and the bucket test in (6)
does not result in any improvement in
this case. Thus, a fast multi-exponentiation
algorithm is crucial to the practicality of
this general batch verification. Equation (9)
can be rewritten for more efficient compu-

tation as

=) b/ ¢,

IT y"47'= g"mod , (10)
where b =—c¢;b;mod ¢.

The left-hand side of equation (10) can
be computed using one of our presented
algorithms according to the batch size =.
Since the size of the ¢; is much smaller
than that of the 4, we may choose different
window sizes in Algorithms WU, WS and
LL for better performances. However, Al-
gorithm BG should have the same window
size to share some common computations.
From the analysis of Sect.IV, we can see
that the presented algorithms enable us
to verify a batch instance of » signatures
about 2 to 4 times faster than the naive
binary algorithm, and about 2 to 10 times
faster than individual verification, depending
on the batch size ».

V. Conclusion

There are a number of cryptographic
applications requiring efficient multi-ex-
ponentiation(i.e., computation of a product
of powers), in particular in a variety of
applications using digital signatures. In this
paper, we presented several algorithms for
efficient multi-exponentiation and analyzed
their performances. The presented algorithms
can perform »-term exponentiation( » ranging
from a few to several thousands) 2 to 4
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times faster than the basic binary multi-
exponentiation algorithm. We can choose
the best performing algorithm according to
the number (n) of powers and the bit-length
of exponents. In general, Algorithm WU is
the best for very small », while for moderate
values of » Algorithms LL and WS perform
better. For very large », Algorithm BG is
the fastest.
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