신경회로망기반 다중고장모델에 의한 비선형시스템의 고장감지와 분류

(Fault Detection and Isolation of the Nonlinear systems Using Neural Network-Based Multi-Fault Models)

  • 이인수 (상주대학교 전자전기공학부)
  • Lee, In-Su (Dept.of Electronics Electric Engineering, Sangmyung University)
  • 발행 : 2002.01.01

초록

본 논문에서는 비선형시스템에서 발생한 고장을 감지하고 분류하기 위한 신경회로망기반 다중고장모델을 이용한 고장감지 및 분류 방법을 제안한다. 시스템에 변화가 발생하면 시스템의 출력과 신경회로망 공칭모델 출력 사이의 오차가 고장감지를 위한 문턱값을 넘고, 고장이 감지되면 각 신경회로망 고장모델 출력과 시스템 출력 사이의 오차를 이용하여 통계적 기법으로 고장을 분류한다. 컴퓨터 시뮬레이션 결과로부터 제안한 고장진단방법이 비선형시스템에서의 고장감지 및 분류문제에 잘 적용됨을 알 수 있다.

In this paper, we propose an FDI(fault detection and isolation) method using neural network-based multi-fault models to detect and isolate faults in nonlinear systems. When a change in the system occurs, the errors between the system output and the neural network nominal system output cross a threshold, and once a fault in the system is detected, the fault classifier statistically isolates the fault by using the error between each neural network-based fault model output and the system output. From the computer simulation results, it is verified that the proposed fault diagonal method can be performed successfully to detect and isolate faults in a nonlinear system.

키워드

참고문헌

  1. J. Wagner and R. Shoureshi, 'A failure isolation strategy for themofluid system diagnostics,' ASME J. Eng. for Industry, Vol. 115, pp. 459-465, 1993 https://doi.org/10.1115/1.2901790
  2. R. Isermann, 'Process fault detection based on modeling and estimation methods-a survey,' Automatica, Vol. 20, No. 4, pp. 387-404, 1984 https://doi.org/10.1016/0005-1098(84)90098-0
  3. M. M. Polycarpou and A. T. Vemuri, Learning methodology for failure detection and accommodation,'IEEE Contr. Syst. Mag., pp. 16-24, 1995 https://doi.org/10.1109/37.387613
  4. J. C. Hoskins and D. M. Himmelblau, 'Artificial neural network models of knowledge representation in chemical engineering,' Computers Chem. Engng., Vol. 12, No. 9, pp. 881-890, 1988 https://doi.org/10.1016/0098-1354(88)87015-7
  5. V. Venkatasubramanian, R. Vaidyanathan and Y. Yamamoto, 'Process fault detection and diagnosis using neural networks-steady state processes,' Computers Chem. Engng., Vol. 14, No. 7, pp. 699-712, 1990 https://doi.org/10.1016/0098-1354(90)87081-Y
  6. E. Eryurek and B. R. Upadhyaya, 'Sensor validation for power plants using adaptive back propagation neural network,' IEEE Trans. Nuclear Science, Vol. 37, No. 2, pp. 1040-1047, 1990 https://doi.org/10.1109/23.106752
  7. T. Sorsa, H. N. Koivo and H. Koivisto, 'Neural networks in process fault diagnosis,' IEEE Trans. Syst. Man and Cybern. Vol. 21, No. 4, pp. 815-825, 1991 https://doi.org/10.1109/21.108299
  8. M. A. Kramer and J. A. Leonard, 'Diagnosis using backpropagation neural networks-analysis and criticism,' Computers Chem. Engng., Vol. 14, No. 12, pp. 1323-1338, 1990 https://doi.org/10.1016/0098-1354(90)80015-4
  9. A. Srinivasan and C. Batur, 'Hopfield/ART-1 neural network-based fault detection and isolation,'IEEE Trans. Neural Networks, Vol. 5, No. 6, pp. 890-899, 1994 https://doi.org/10.1109/72.329685
  10. D. E. Rumelhart and J. L. McClelland, Paralle distributed processing: explorations in the microstructure of cognition, Vol. 1, MIT Press, Reading, MA, 1986
  11. J. D. Cryer, Time Series Analysis, Duxbury Press, 1986
  12. A. P. Sage and J. L. Melsa, Estimation Theory with Applications to Communications and Control, McGraw-Hill, 1971
  13. I. Jouny and F. D. Garber, 'M-ary sequential hypothesis tests for automatic target recognition,' IEEE Trans. Aerosp. Electron. Syst., Vol. 28, pp. 473-483, 1992 https://doi.org/10.1109/7.144573