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Abstract

In this paper, we consider Choquet integrals of interval

number-valued functions(simply, interval number-valued

Choquet integrals). Then, we prove convergence theorem for interval number-valued Choquet integrals with respect to

an autocontinuous fuzzy measure.
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1. Introduction.

It is well-known that closed set-valued functions had
been used repeatedly in many papers [1, 2, 5, 6, 7, 8, 9,
13, 15, 16]. We studied closed set-valued Choquet
integrals in [7, 8] and convergence theorems under

some sufficient conditions, for examples ; ()
convergence theorems for monotone convergent
sequences of Choquet integrably bounded closed

set-valued functions(see {7]), (ii) covergence theorems
for the upper limit and the lower limit of a sequence of
Choquet integrably bounded closed set-valued functions
(see [9D).

The aim of this paper is to prove convergence
theorem for convergent sequences of Choquet integrably
bounded interval number-valued functions in the metric
A g (see Definition 34). In section 2, we list various
definitions and notations which are used in the proof of
convergence theorem and discuss some properties of
measurable interval number—valued functions. In section
3, using these definitions and properties, we investigate
main results.

2. Definitions and preliminaries.

Definition 2.1 [8, 121 (1) A fuzzy measure on a
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fuzzy measures, autocontinuous, Choquet integrals, Hausdorff metric, convergence theorem.

measurable space (X, J) is an extended real-valued
function g : 7 — [0, ] satisfying

® u(2)=0,

(i) (A) <u(B), whenever A,Bs7J, ACB.
(2) A fuzzy measure g is said to be autocontinuous
from abovelresp.,below] if u#(AUB,) — u(A)lresp.,
u(A~B,) — p(A)] whenever Ae7, {B,)CT
u(B,) — 0.
(3) If g is autocontinuous both from above and from
below, it is said to be autocontinuous.
Recall that a function f: X — [0,] is said to be
measurable if {MAx)>a}eT for all es(— oo, o).

and

Definition 2.2 [12] (1) A sequence {f,} of measurable

functions is said to converge to
symbols f, — y f if for every >0,

f In measure, in

mﬂ( {d 1£,(x) — Ax)> e}) =0.

(2) A sequence {f,} of measurable functions is said to
converge to f in distribution, in symbols f, = f if
for every &>0,

imp, (N=uplr) ec,
where  pAn=p({sdf(x)>7r}) and "ec.” stands for

"except at most countably many values of #'.

Definition 2.3 [10,11,12] (1) The Choquet integral of a

323



=2 Hx 2 XlsAlA"” Bhs 2002, Vol. 12, No. 4

measurable function f with respect to a fuzzy measure
u is defined by

(O [ fau= [ ufnar

where the integral on the right-hand side is an
ordinary one.
(2) A measurable function f is called integrable if the
Choquet integral of f can be defined and its value is
finite.

Throughout the paper,
[0, ),

R* will denote the interval

IR ={[a,blla,becR" and a<b}.

Then a element in I(RY) is called an interval
number. On the interval number set, we define; for
each pair [a, bl.[c,dl€eKR") and keR™,

[a, bl+[c,dl=[a+c, b+d],
[a,8] - lc,dl=[a- c,b-dl,
Ha,bl=1ka, kb],
[a,bl<[c,d] if and only if
a<c and b<d,

Then (I(R%),dy) is a metric space, where dj is the
Hausdorff metric defined by

dH(A,B)z max{ sup xeAinf yele_yiy
SUp e pinf e qlx— 3}

for all A,BeKR"). By the definition of the Hausdorff
metric, we have immediately the following proposition.

Proposition 2.4 For each pair [a,b], [c,dl€lR"),
di(la,bl, [c,d)=max{la—d,lb—d}.

Let C(R') be the class of closed subsets of R™.
Throughout this paper, we consider a closed set-valued

function F: X— C(R")\{®@} and an interval
number-valued function F: X — I(RT)\{o}. We
denote that dy— limA,=A if and only if

lim d;{A,, A)=0, where AcIR") and {A4,)CKR™).

Definition 2.5 [1,6,7]1 A closed set-valued function F is
said to be measurable if for each open set O CRY,

F Y 0O) = {xeXIF(x)NO*+0}=T.

Definition 26 [1] Let F be a closed set-valued

function. A measurable function f: X — R™ satisfying
Ax)eF(x) for all x€X

is called a measurable selection of F.
We say f: X — R* is in LL() if and only if f is
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measurable and (C) ff du{o, We note that "

xeX pu—a.e.” stands for " x€X p-almost everywhere”.
The property P(x) holds for x€X p—a.e. means that
there is a measurable set A such that u(A)=0 and the
property P(x) holds for all xeA°, where A€ is the
complement of A.

Definition 2.7 [6,7]1 (1) Let F be a closed set-valued
function and A< 7. The Choquet integral of F on A
is defined by

(O [ Fdu= (O [ fau | feSLF))

where S.(F)
integrable selections of F, that is,

is the family of g—a.e. Choquet

S(F={feLlYw | Ax)eF(x) x€X p—a.e.}

(2) A closed set-valued function F is said to be
Choquet integrable if (C) f Fdu+@.

(3) A closed set-valued function F is said to be
Choquet integrably bounded if there is a function
g= LY (w) such that

IF(oll = sup ,eqnl<g(x)  for all xeX.

Instead of (O) | Fdu, we will write (C) | Fdu. Let
X

us discuss some basic properties of measurable closed
set-valued functions. Since R*=[0, ) is a complete
separable metric space in the usual topology, using
Theorem 8.1.3([1and Theorem 1.0(2° )([5]), we have
the following two theorems.

Theorem 28 [1,5] A closed set-valued function F is
measurable if and only if there exists a sequence of
measurable selections {f,} of F such that

F(x)=cl{f,(x)} for all xeX.

Theorem 29 [15] If F is a measurable closed
set-valued function and Choquet integrably bounded,
then it is Choquet integrable.

3. Main results.

we prove convexity of interval
number-valued Choquet integrals and discuss the
concepts of convergent sequences of measurable
interval number-valued functions in the metric &g

In this section,

Since (X, F) is a measurable space and R' is a
separable metric space, Theorem 1.0(2°)([5]) implies the
following theorem. Recall that a measurable closed
set-valued function is said to be convex-valued if F(x)



is convex for all x=X and that a set A is an interval
number if and only if it is closed and convex.

Theorem 3.1 If F is a measurable closed set-valued
function and Choquet integrably bounded, then there
exists a sequence {f,} of Choquet integrable functions

f,: X — R"such that F(x)= cl{f(x)} for all x=X.

Proof. By Theorem 1.0 (2% ([5)), there exists a
sequence {f,} of measurable functions f£,: X — R*
such that F(x)= cl{f,(x)} for all
Choquet integrably bounded,
function geL!(x) such that

xeX. Since F is
there is a measurable

[1F(0l = sup{Are F(x)} < g(x),

Since f(x)eF(x) for all x€X and all »=1,2,-,
f.(x) <g(x) for all xeX. By Proposition 3.2([11]),

for all xeX

(O [ f,du=(O) [gaucoo,  for all n=1,2,

So, f, is Choquet integrable for all »=1,2,---. The
proof is complete.

Theorem 3.2 If F is a measurable closed set-valued
function and Choquet integrably bounded and if we
define

/(%)= sup{Hre F(x)}

and
£(x) = inf{HreF(x)}

for all x=X, then f and f. are Choquet integrable

selections of F.

Proof. Since F is Choquet integrably bounded, there
exists a function ge=Ll(g) such that [|[F(x)li<g(x) for

all x=X. Theorem 3.1 implies that there is a sequence
{f,} of Choquet integrable selections of F such that

F(x)= cl{f,(x)} for all xeX.
Then
()= sup{Hre F(x)} = sup f,(x)
and
£ = inf{Hre F(x)} = inf .f,(x).

Since the supremun and the infimum of a sequence
{f,} of measurable functions are measurable, f* and f.
are measurable. And also, we have

</ < W=F(ll<g(x) for all xeX.

Since geLl\(g), f and f, belong to L.L(x). By the
closedness of F(x) for all xeX, flx)eF(x). and
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f(eF(x) for all x=X. Therefore, f and f, are
Choquet integrable selections of F.
Assumption (A) For each pair f,g=S(F), there
exists heS(F) such that ~h and
(O) [ gdn=(C) [ hap.

We consider . the following classes of interval

number-valued functions;

J={F| F: X—KR") is measurable
and Choguet integraby bounded }
and

7,={Fe7| F satisfies the assuption(A)}.

Theorem 33 If Fe7J, , then we have
(1) c¢Fe7, for all ceR?,
(2) (C)fFa’;z is convex,

3 (O) [ Fdu=1(C) [ fudue,(O) [ fd.

Proof. (1) The proof of (1) is trivial.

(2) If (C)fF,u is a single point set, then it is convex.
Otherwise, let vy, v,€(C) f Fdp and y,{y,. Then, there
exist f, /,€SAF) such that

=0 [ fide and y,=(C) [ frde.

Further, let y=(v,,¥,) we need to a selection feSJ(F)
with  y=(C) ffd/z. Since y=(y,,¥,), there exists

4,€(0,1) such that y=2,+(1—2yy,. For above two
selections f, f,=S.(F), the assumption (A) implies that

there exists g=S.(F) such that f,~g and (C)fgd/z=

(O f fodn. We define a function f=Ayf;+(1—2y)g and
that  Agi~(1—2pe.
number-valued, it is convex and hence

Rx)=2/j(x) + (1 = Apg(x) = F(x)

for x€X p-ae. By Theorem 56 [11] and
Proposition 3.2 (2)[11],

note Since F is interval

¥y = A+ (1 -2y,
= (O [aehidu+(0) [(1=a))rdp

= (O [ fidue+ (1= 2,)(C) [ fode
= 4O [ fidu+ (1= 2)(C) [ gde
= (O [ Mfidu+(O) [(1—dpeda
= (O [+ (1= 2)du

= (O [ fau
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Thus, we have feS/(F) and
y=(O [ fau=(C) | Fap.

The proof of (2) is complete.
(3) We note that f,<f<f for all feS/ F). Thus, by
Proposition 3.2(2)[11],

(O) [ £.du=(O) [ fau<(O) [ Fau
for all feS(F). Theorem 3.2 implies
(O [ £uau,(O) [ Faue(C) [ Fau.

By (2), (O f Fdy is convex in R' and hence

(O [ Fau=1(0) [ fdu,(C) [ Fdul.
We consider a function 4 on 7 ,defined by

A (F, G)= sup ,c xdy(F(x), G(x))

for all F,Ge7,. Then, it is easily to show that A is

a metric on T ,.

Definition 34 Let FeJ,. A sequence ({F,C7,

converges to F in the metric A , in symbols,

F,— . Fif lmagF,F)=0,

Theorem 3.5(Convergence Theorem) Let F,G,He7,
and {F,} be a sequence in 7 ,. If a fuzzy measure u
is autocontinuous and if F,— , F and G<F,<H,

then we have
dy= 1im(C) [ Fdu=(C) [ Fa.
Proof. By Proposition 2.4,
drl(F (3), ) =max( 1 () = £,
| D~ £ )

for all x=X, where

f wex) = inf{AreF,(x)},
fu(x)=sup{HreF (x)}

for n=1,2,-,

f ()= inf{AreF(x)},
F (%)= sup{AreF(x)}.

Since o (F, F) — 0 as n—o,
SUD yexdf pe(2) —F ()] — 0
and

“SUp e xlfi(x) — £ () — 0.
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Given any >0, there exist two natural numbers N, N,
such thatlf,.(x) — f,(x)|<e for all #>=N, and all xX,
and |f,(x)—F(»)I<e for all #»>=N, and all xeX. We
put N=max{N, N,}. Thus for each n=N,

wlx | () — £ (DD e} = (@) =0
and
wlx L 1f(0) = F (01> e} = w(@)=0.
Then, clearly we have that for arbitrary >0,
wlx | 1f pu(®) =il =€} — 0 as n—oo
and
plx 1 15,(x0) = F(0l2e} - 0 as n— oo,

That is, f, —ufe and f,—y, f as mnooo. It is

clearly to show that if G<F,<H then

o (N=p, (N<p, (D

“and

ppMN=<p (N<p,(») for all r=R",

where

&.(x)=inf{AreG(x)},

g'(x) = sup{dreG(x)},
h(x)= inf{Are H(x)},

k' (x)=sup{Are H(x)}.

Since g is autocontinuous, by Theorem 3.2[12], we
have

i (C) [ £ d=(C) [ fudu
and 1im(O) [fidu=(C) [ Fau.
Therefore,
df(C) [ Fodu,(O) [ Fdu)
= max{l(O) [ £ ,udu—(C) [ fudl,
1(O) [ fru—(O) [ Fdul}
-0

as n — oo,
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