EXTENDED JACOBIN ELLIPTIC FUNCTION METHOD AND ITS APPLICATIONS

  • Chen, Huaitang (Department of Applied Mathematics, Dalian University of Technology, Department of Mathematics, Linyi Teachers University) ;
  • Zhang, Hongqing (Department of Mathematics, Linyi Teachers University)
  • Published : 2002.09.01

Abstract

An extended Jacobin elliptic function method is presented for constructing exact travelling wave solutions of nonlinear partial differential equations(PDEs) in a unified way. The main idea of this method is to take full advantage of the elliptic equation that Jacobin elliptic functions satisfy and use its solutions to replace Jacobin elliptic functions in Jacobin elliptic function method. It is interesting that many other methods are special cases of our method. Some illustrative equations are investigated by this means.

Keywords

References

  1. Phys.Lett.A v.214 Travelling solitary wave solutions to seventh-order generalized KdV equation B.R.Duffy;E.J.Parkes
  2. Phys.Lett.A v.229 Travelling solitary wave solutions to a compound KdV-Burgers equation E.J.Parkes;B.R.Duffy
  3. Exact solitary wave solutions of nonlinear evolution equations Z. B. Li;X. S. Gao(Eds.);D. M. Wang(Eds.)
  4. J.Phys.A v.26 Travelling wave solutions to the two-dimendional KdV-Burgers equation Z.B.Li;M.L.Wang
  5. J.Phys.A v.27 Exact solutions to the two dimensional KdV-Burgers equations E.J.Parkes
  6. Phys.Lett.A v.290 New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations Z.T.Fu;S.K.Liu;S.D.Liu;Q.Zhao
  7. Phys.Lett.A v.277 Extended tanh-function method and its applications to nonlinear equations E.G.Fan
  8. Acta Math.Appl.Sinica v.23 Explicit and exact solutions for a class of nonlinear wave equations Y.D.Shang
  9. Phys.Rev.Lett. v.19 Method for solving the KdV equation C.S.Gardner;J.M. Greene;M.D.Kruskal;R.M.Miura
  10. Phys. Lett. A v.293 Application of Hirota's bilinear formalism to the Toeplitz latticesome special soliton-like solutions X.B. Hu;W.X. Ma
  11. J. Math. Phys. v.24 The painleve property for partial differential equations J. Weis;M. Tabor;G. Garnevale
  12. Phys. Lett. A v.246 A note on the homogeneous balance method E.G.Fan;H.Q. Zhang
  13. Phys.Lett.A v.260 Exact solutions of nonlinear equations L.Yang;Z.Zhu;Y.Wang
  14. Phys.Lett.A v.265 Two new applications of the homogeneous balance method E.G.Fan
  15. Powder Technology v.97 The hyperbolic tangent distribution family B.Tibor;L.Bela;M.Csaba;U.Zsolt
  16. Phys.Lett.A v.224 A simple transformation for nonlinear waves C.Yan
  17. Phys.Lett.A v.278 Exact solutions of nonlinear PDE,nonlinear transformations and reduction of nonlinear PDE to a quadrature L.Yang;J.B.Liu;K.Q.Yang
  18. Phys.Lett.A v.285 Explicit and exact travelling wave solution of Whitham-Broer-Kaup Shallow water equations F.D.Xie;Z.Y.Yan;H.Q.Zhang
  19. Phys.Lett.A v.285 Soliton solutions for the new complex version of a coupled KdV equation and a coupled MKdV equation E.G.Fan;L.Chao
  20. Phys.Lett.A v.282 Soliton solutions for a generalized Hirota-Satsuma coupled KdV equation and a coupled MkdV equation E.G.Fan
  21. Phys.Lett.A v.285 New explicit solitary wave solutions and peiodic wave solutions for Whitham-Broer-Kaup equation in Shallow water Z.Y.Yan;H.Q.Zhang
  22. Acta Phys. Sinica v.50 Expansion about the Jacobi elliptic function and its applications to nonlinear wave solutions S.K.Liu;Z.T.Fu;S.D.Liu;Q.Zhao
  23. Phys.Lett.A v.199 Solitary wave solution for variant Boussinesq equations M.L.Wang
  24. Phys.Lett.A v.216 Applications of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics M.L.Wang;Y.B.Zhou;Z.B.Li
  25. Phys.Lett.A v.292 Double peiodic solutions with Jacobi elliptic functions for two generalized Hirota-Satsuma coupled KdV systems E.G.Fan;Benny Y.C.Hon
  26. Acta Phys.Sinica v.51 New periodic solutions to a kind of nonlinear wave equations S.K.Liu;Z.T.Fu;S.D.Liu;Q.Zhao
  27. Acta Phys.Sinica v.51 The envelope periodic solutions to nonlinear wave equations with Jacobi elliptic function S.D. Liu;Z.T.Fu;S.K. Liu;Q. Zhao
  28. Phys. Lett. A v.295 The Jacobi elliptic-function method for finding periodic wave solutions to nonlinear evolution equations E.J.Parkes;B.R.Duffy;P.C.Abott
  29. Phys.Lett. A v.289 Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations S.K. Liu;Z.T.Fu;S.D. Liu;Q. Zhao
  30. Phys.Lett. A v.287 Explicit solutions to three nonlinear physical models J.L. Hu