DOI QR코드

DOI QR Code

Numerical Study on Analysis and Design of Tube Hydroforming Process by the FEM

유한요소법에 의한 관재 하이드로포밍 공정 해석 및 설계를 위한 수치적 연구

  • 김정 (부산대학교 항공우주공학과) ;
  • 강범수 (부산대학교 항공우주공학과)
  • Published : 2002.08.01

Abstract

A generalized numerical approach based on the finite element method to analysis and design of hydroforming process is proposed in this paper. The special attention is focused on comparison of an implicit and an explicit finite element method widely used for hydroforming simulation. Furthermore, in order to meet the increasing real needs for prediction of forming limit, a ductile fracture criterion combined with finite element method is introduced and then applied to hydroforming process of an automobile lower m Consequently, the numerical analysis and design for hydroforming process presented here will facilitate the development and application of the tube hydrofoniung process to a new level.

Keywords

References

  1. J. of Materials Processing Technology v.108 An Overall Review of the Tube Hydroforming (THF) Technology M. Koc;T. Altan https://doi.org/10.1016/S0924-0136(00)00830-X
  2. J. of Materials Processing Technology v.98 Tube Hydroforming State-of-the-Art and Future Trends M. Ahmetoglu;T. Altan https://doi.org/10.1016/S0924-0136(99)00302-7
  3. 한국소성가공학회지 v.10 no.7 유한요소법을 이용한 자동차 로어암의 액압성형 해석 김정;장유철;강성종;강범수
  4. Innovation in Tube Hydroforming Technology International Conference Optimization of Process and Tool Development for Tube Hydroforming Using Computer Simulation J. Liu;D. Hahn
  5. 한국자동차공학회지 v.9 no.6 튜브 액압성형 공정에서의 터짐 현상 예측 김정;L.P. Lei;강성종;강범수
  6. J. of Materials Processing Technology v.83 Step wise combined implicilt-explicit finite element simulation of autobody stamping processes D.W. Jung;D.Y. Yang https://doi.org/10.1016/S0924-0136(98)00059-4
  7. White papers in MARC Corp. Comparison between the static implicit and dynamic explicit methods for FEM simulation of sheet forming processes S.P. Wang;S. Choudhry S.;T.B. Wertheimer
  8. J. of Material Processing Technology v.105 Comparison of implicit and explicit finite element methods for dynamic problems J.S. Sun;K.H. Lee;H.P. Lee https://doi.org/10.1016/S0924-0136(00)00580-X
  9. Numerical Methods for Simulation of Industrial Metal Forming Processings ASME, CED-Vol.5/AMD v.156 Industrial application of implicit and explicit finite element methods to forming process N. Rebelo;J.C. Nagtegall;L.M. Taylor
  10. Int. J. of Mechnical Science v.44 no.7 Bursting Failure Prediction in Tube Hydroforming Processes by using Rigid-plastic FEM Combined with Ductile Fracture Criterion L.P. Lei;J. Kim;B.S. Kang https://doi.org/10.1016/S0020-7403(02)00045-0
  11. Intl. J. of Machine Tools & Manufacturing v.42 Manufacture of an Automobile Lower Arm by Hydroforming J. Kim;L.P. Lei;S.M. Hwang;S.J. Kang;B.S. Kang https://doi.org/10.1016/S0890-6955(01)00087-6
  12. Metal Forming and the Finite Element Method S. Kobayashi;S.I. Oh;T. Altan
  13. J. of Mech. Work Tech. v.4 Criteria for Ductile Fracture and Their Applications M. Oyane;T. Sota;K. Okintoto;S. Shima https://doi.org/10.1016/0378-3804(80)90006-6
  14. J. of Materials Processing Technology v.95 The Application of Some Criteria for Ductile Fracture to the Prediction of the Forming Limit of Sheet Metals H. Takuda;K. Mori;N. Hatta https://doi.org/10.1016/S0924-0136(99)00275-7
  15. J. of Materials Processing Technology v.92-93 Prediction of Forming Limit in Bore-Expanding of Sheet Metals Using Ductile Fracture Criterion H. Takuda;K. Mori;H. Fujimoto;N. Hatta https://doi.org/10.1016/S0924-0136(99)00122-3
  16. Transaction of NAMRI/SME XXIV Prediction of Forming Limit in Deep Drawing of Finite Element Simulation and Criterion for Ductile Fracture K. Mori;H. Takuda
  17. Int. J. of Mech. Sci. v.42 Finite Element Analysis of Limit Strains in Biaxial Stretching of Sheet Metals Allowing for Ductile Fracture H. Takuda;K. Mori;N. Takakura;K. Yamaguchi https://doi.org/10.1016/S0020-7403(99)00018-1
  18. Engineering Computations v.13 no.2/3/4 Solution of quasi-static, force driven problems by means of a dynamic explicit approach and an adaptive loading procedure K. Mattiasson;L. Bernspang;A. Samuelsson https://doi.org/10.1108/02644409610114521
  19. Engineering Computations v.15 no.6 On the dynamic effects of explicit FEM in sheet metal forming analysis W.J. Chung;J.W. Cho;T. Belytschko https://doi.org/10.1108/02644409810231880

Cited by

  1. A Prediction of Bursting Failure in Tube Hydroforming Process Based on Necking Conditions vol.13, pp.7, 2004, https://doi.org/10.5228/KSPP.2004.13.7.629