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1. Introduction control. It is expected that the sliding mode observer will
provide robust state reconstruction in the presence of
The control task for marine vehicles including ships, —uncertainties and disturbances. (Nicosia and Tomei, 1990)

submarines, and underwater vehicles is a challenging proposed a simple linear observer, in which high gains are

problem since the dynamics of marine vehicles is nonlinear, used to attenuate the nonlinearities that characterize the

time varying and uncertain. Moreover, environmental robot dynamics. (Berghuis and Nijmeijer, 1993) developed a

disturbances make the control task more difficult. Various N€W approach to the observer design problem using the

advanced control methods have been developed in the last a  Passivity-based controller design concept and showed a

few decades to meet increasing demands on the strategy to construct a controller and an observer

performance especially in the robotics community. All of the considering the dynamics of the both controller and observer

aforementioned  feedback controllers, however, require simultaneously. (Misawa, 1988) showed basic concepts of the

measurements of all the states for feedback, which is sliding mode observer for second order systems in his

impractical and sometimes impossible. dissertation. Although there is a clear description of the

In marine vehicles, linear translational velocities such as principle for second order systems derived from phase plane

heave, surge, and sway velocities are difficult to measure analysis, it is shown that the design rules drawn from the

compared to other states. The control signal requires the second order system are not sufficient to guarantee stable

measurement of the linear translational velocity components observers for higher order systems. He showed that the
in addition to the position and attitude of the vehicle.

Usually, linear translational velocities are obtained by a

additional requirement of strict positive realness of the linear
part of the system is necessary. However, the use of the
sliding observer inside a control loop is not considered in
his dissertation.

For marine vehicles, (Fossen and Strand, 1999) developed
a nonlinear observer that is shown to be globally

model-based state estimation through mnoisy position
measurements. Considering the coupled and highly nonlinear
dynamics of marine vehicles, a nonlinear observer needs to
be used to estimate the linear translational velocities of
marine vehicles. exponenti.ally stable (GES) thro.ugh 'a Passivity desi@. Usinlg

Several nonlinear observer techniques have been developed the ronlinear cbserver, no linearization of the kinematic
in robotics community. (Slotine et al., 1987) present a sliding

mode observer using a similar concept to the sliding mode

equation is necessary, resulting in a fewer number of tuning

parameters compared to that of the Kalman filter. An

output feedback controller is derived using the backstepping

based on the observer.

ALAAL A d A=A 1914-287-3811 USA. In this study, a robust nonlinear observer of (Fossen and
myung kim@nypa.gov Strand, 1999) is extended utilizing the sliding mode observer
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technique. A new stability interpretation is performed with
the proposed observer. (Kim and Inman, 2001) used the
sliding mode observer technique and applied it to a
problem of dynamic positioning of ships. The observer
needs to be able to estimate linear velocities of the ship and
bias from slowly varying environmental loads. It also needs
to be able to filter out wave frequency signal since feedback
of the wave frequency signal will cause wear of the
The
advantage of the proposed observer is in its robustness.
Since the mathematical model for dynamic positioning of a

actuators and excessive fuel consumption. main

ship is difficult to obtain and includes uncertainties and
disturbances, it is very important for the observer to be
robust.

2. Mathematical Model for Dynamic
Positioning (DP) of Ships

The objective of dynamic positioning (DP) systems in
ships is to maintain the marine vessel in a fixed position
and heading in the horizontal plane or to follow a
predetermined track by means of the ship propulsion
system. A  brief mathematical model for dynamics
positioning of a ship is discussed, and it can also be found
in (Fossen, 1994). A typical schematic of a DI ship and
coordinate system is shown in Fig. 1.

The equations of motion of DP ships in surge, sway and

yaw can be described as

My+Dy =+ ] (Pb+ Ew, )
7 =y
where M is the inertia matrix including hydrodynamic

added inertia, and D is the damping matrix. Here
v=[u,v, ] is
the body-fixed linear velocity vector, and 7=[X, Y, ¢] Tis

the position and yaw angle in the earth-fixed coordinate.
forces and moment re R’

The control provided by

thrusters and the current be R acting on the vehicle are
considered to be external forces. The transformation matrix
is denoted as J(¢). The uncertainties and disturbances in
the ship dynamics are described by FE,w, where w, is a
zero mean Gaussian white noise and F, a diagonal matrix

scaling  the  amplitude  of w, The  properties

M= MT>O,M:O and D>( are used extensively in the
development of the controller and the observer in the

following sections.

X
Y
[Z

Fig. 1 Schematic of a DP ship

A common bias model for marine vehicle control is
b=—T 'b+n @)

T is

a diagonal matrix of bias time constants, and ¥ is a

where # is a zero mean bounded disturbance vector,

diagonal matrix scaling the amplitude of #. The bias model
accounts for slowly varying forces and moments due to
2nd-order wave loads, ocean currents and wind.

Wave can be divided
disturbances and 2nd-order wave drift forces.

into 1st-order
For the
practical control system design purpose, lst-order wave
disturbances can be described by three harmonic oscillator

with some damping. Linear 2nd-order wave forces are

forces wave

modeled as
E :AwE+Eéw5 3
70 = CuE ©)

where  7,=[x,, ¥y ¢ T and wge]{’3 is a zero mean

bounded disturbance vector and

Au=| e —2[/19]’Ew:[70]’cw=[0 1o
where Q= diag{w, wy w3}, A=diag{§, s, &3}, and

E,=diag{E., E., E,5). Here wfi=1,...,3) are

wave frequency and &,(i=1,...,3) are relative damping

ratios typically chosen less than 1.0.

The measurement can be written as
y=n+7:+y, ©)

where 1y, is the zero mean Gaussian white measurement
noise. It is assumed that the total position of the ship can
be obtained by superposition of the position and direction

of the ship and wave displacements.



56 Myung-Hyun Kim

3. Robust Nonlinear Observer for
DP of Ships

3.1 The Observer Structure

This section describes how to design a sliding mode
observer which is known to be robust to certain types of
disturbance
Considering the mathematical model developed in the

bounded modeling errors and/or inputs.

previous section, the sliding mode observer can be designed

as
}E :Aw%‘*'HJ
7o =N+ Hyy+ Ksal(2)
b =— T 'b+Hyy ©6)
My =—Dv+c+]Tb+JTHy
y =7+C,¢

where H{i=1,...4) and K are observer gains and the

variables with hat denoting estimates. The saturation
function saf(z) is defined as
> z/l2l  if|z=e
sat{z/e) =1 "X 1~
Kzle) { zle  if|zl<e g

with z which will be defined later. The observer error

dynamics can be obtained as

E=A,—Hy

70 = J ) v— Hyy— Ksa(Z)

b=—T"'b—Hyy ®)
My =—Dv+c+J"b—JTH,y+ Ew,

y =+ C,E

where E=&— & v=yv—v—v,b=b—band 7=7y—17.
Defining x=[&7, 77, 6717, can be

combined into

the equation (8)

% :A§+B](y)7/—Ksat(5)
z =Cx )
My =—Dyv—J"z+ Ew,

where A, B and C have the values:

A,—HC, —H 0 0
A= _HZCw -HZ 0 s B:[ [] (10)
—~H,C, —Hy —T7! 0
0
0

The equation (9) can be represented as a feedback form
shown in Fig. 2. The feedback systems is composed of the

subsystems X| and 23, and the stability of the feedback

system will be shown in the following section. The

significance of the above modeling is to include the effect of

disturbance , which represents the modeling error and

uncertainties in ship dynamics. Since the dynamic model of
DP ships
structural uncertainties, it is important to design an observer

includes both parametric uncertainties and

having robustness against those undesirable effects.

Wv

Fig. 2 Observer feedback configuration

3.2 Stability Analysis

The passivity approach is taken in this study to provide
conditions that will ensure the stability of the feedback
system in Fig. 2. The main idea lies in that every nonlinear
passive system controlled by a passive control system is
closed-loop stable (Khalil, 1996). The passivity and stability
of the subsystem J; can be derived by showing that the

subsystem is state strictly passive. For the subsystem X,

take Lyapunov function as
V=1TMy (11)

Noting that M is positive definite and denoting —J T2 as
€., the passivity of the subsystem JX| can be proved as

> V+%,1mm(DT+ D)y

implying the state strict passivity with A;, denoting the
minimum eigenvalue. Consequently, the asymptotic stability
of =0 can be concluded. The output from the vehicle
dynamics, represented as v+ Z,, is composed of the
output from the vehicle dynamics v plus the output vy,
from the disturbance FE,w, The objective is to design a

sliding mode observer that will provide estimates of state x
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which is an approximation of the actual state x in the
presence of the modeling errors and disturbance K, w,.

Note that the sliding mode observer is basically the

conventional Luenberger observer with the additional

switching term Ksat(2z) that will be used to guarantee
robustness against modeling errors and disturbances. As we

choose K= BE with O@=diag(p;) and consider the

asymptotic stability of v, the error dynamics results in the

form

x=Ax—K(sa(2)— 0 "' [(»)vy) (13)

According to the passivity theorem, described in (Misawa,
1988), it can be shown that the state estimation errors go
asymptotically to zero as long as the observer satisfies the
which is known to be
Kalman-Yakubovich-Popov lemma (positive real lemma) for

P=P'and Q= Q".

following  relationship,

positive definite matrices

T —
PA+%T£ ;CQ 1)

The linear observer gain H is obtained from the
requirement to satisfy the KYP lemma equations for the
subsystem J,. Considering the effect of the disturbance w,

explicitly, equation (9) can be rewritten as

x = Ax+ BI)(v+ vy) — Ksat( 2)
z =Cx (15)
v

My =—Dv—JTZ2+E,w,

Lyapunov function is chosen in the form of
V=x"Pi+ v My (16)

where P is a symmetric positive definite matrix. Taking the
time derivative of the Lyapunov function, equation (16), we

obtain

V =—x"Qi— v (D"+D)v+2x PBJv
—207) 2+ 22" PBIv,—2x PKsa(D) (g
=—27Qi— V(D "+ D) v¥227]v,
— 227 Osal( Z)

As we select p; to satisfy the relation ||@]|=]|]v|l, it can

be shown that the time derivative of the Lyapunov function
is negative definite, which implies asymptotic stability of the

states .

4. Observer Backstepping with
the Nonlinear Observer

4.1 Nonlinear Controller Design using Observer

Backstepping
Nonlinear backstepping technique is utilized to obtain the
output feedback controller which makes the closed-loop
system stable. It is assumed that a smooth desired trajectory

in earth-fixed coordinate 7,=[7, Tas 77';,]T are generated

from a proper reference trajectory generator. The objective of
the controller is to provide a proper control action that
enables the ship to follow the desired position and heading,

Define the error variable z; as

t ~ -
21— 4+ Kzfo (n—npdr= e Ke; (18)

where K is the gain for the integral action to eliminate
steady state errors and e;= 7—7, Taking the time

derivative of equation (18) yields

Z = 7/.d+KI£?7_ 74) . (19)
= Jv+ Hyy+ Ksa( 2) — na+ KAn— 1)
Choosing the virtual control &= Jv=2z,+a, with the
stabilizing function a;=— C;z;— D2+ 77.d_ K[(;?’ 72)
equation (19) results in

2,=—(C,+ D)z, + 2o+ Hy y+ Ksal( 2) (20)

where () is a strictly positive constant feedback design
matrix, and D, is a positive diagonal damping matrix. The
matrix D) is used to compensate for the disturbance from
the estimation errors and is composed of the column vectors
of H{ and KT in the observer equations. Next, define the
second error variable z,= & —a,=fv—a,. Taking the

time derivative of z,, we obtain
2= A JvH(C D)2y — Gt K= Kima (2D

The term [y can be expressed in terms of estimates and
estimation errors as developed in (Aarset et al., 1998)

J)v=JDS(D Y+ INSHLYV+ND @)

where £=[0,0, 7+ ¢,]7 with # defining the yaw rate,
L=diag{0,0,1}, N is 3x6 matrix with all zero terms
except N(3,6)=1, and S is a skew-symmetric matrix.
Inserting (22) into (21) and defining A as
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A=JSv—JM Y+ MV b—(C,+ D)’z

. 7 (23)
+(C+Dyze— Kt Kyv— 14

equation (21) can be written as

2y= JSLv+JSNE+ A+ M 'c+[/M 'J"H,
+(C,+ Dl)Hi‘*‘ Kﬂiz]&
+[(C,+ D) K+ K K]sat(2)

(24)

Now choosing a control input as

T:_(]M*I)AI[A'FC222+D222+Zl] (25)

the resulting z, error dynamics becomes

2.2: _(C2+D2)22_21+Q15/+ .QZ’I\J

(26)
+ Q584 QysaK(2)

with the obvious definition of Q,(7=1, ...,4). The matrix
C, is a strictly positive feedback design matrix and D, is
a positive diagonal damping matrix with column vectors
from Q{i=1,...,4).

Defining z=[21T , 227] T, the closed-loop system including

the observer dynamics can be shown to be

2 =—C,z—D,z+ Ez+ W,y+ Wyv+ Wi &+ Wsa 2)
er = N—7q

My =—Dy—J'z
x =Ax+ BI(y)v— Ksa 2)
Z =CX
where
_[C 0 D0 0 _7 0
c. [0 cz]’Dz [0 DZ]’E [—1 (ﬂ (29)

W=l o] o] 2] ] o]

4.2 Stability Analysis
In this section, the stability analysis based on the
closed-loop system is performed. The Lyapunov function is

chosen considering both the controller and the observer as

V=Vt Vo= 272+ /K Cres+ Vi

) 29)

The time derivative of the Lyapunov function can be shown
V = ZTZ..‘+‘ 2€7K]C1€]+ V-obs
=—2"Cz—2"Dz+z"Wy+z" W+ 2T W& (30)

+ 2" Wisa2) +2eT K,Cre;— v (DT+ D)V
— xTQi+22 v, 22T @sal( 2)

Adding and subtracting the following zero terms

with G(l1=1,...,4) as defined in (Fossen and Strand,
1999), and considering the relation:

— 4 VG4 ETGE—1 2762 <

ZOW 3+ Wt WE Wisal D) =1 37GiI o)
1 0

4

equation (29) can be written as
V= —2"C—x"(Q— 1 CIGIC,— | CLGiC
— 4 CT6,0i— V(D" + D—§ GV +2¢fK Cre;

Since z,-e;+ K e, equation (30) can be shown

V =—2z20Clz,—21Cozy— v (D" + D)v— 2 7Qx
+22}TK,C161
=—¢,Cie;— e,TKIT(JlK,e,—ngﬂQ— ;TQJF
—VI(DT+ D)y
<90

(34)

implying that the closed-loop system is globally uniformly
stable (GUS). As proved in (Aarset et al, 1998), the
controller can be proven to be globally exponentially stable
(GES) when integral action is implemented through the
feedback cancellation of the bias estimates only. The entire
system including the observer and the controller structure is

shown in Fig. 3.

] Guidance system
n,
T
LA N
e Controller
]
n
] Qbserver T
>
n
— Ship dynamics

Fig. 3 The observer and controller system

5. Simulation Results

The
applied to a model of DP ship in three degrees of freedom,

developed nonlinear observer and controller are

and the simulation results are shown in this section. The
ship parameters and the controller and observer parameters
used in the simulation study can be found in (Kim and
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Fig. 4 Actual (dotted) and estimated (solid) X position of the
DP ship
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Fig. 5 Zoom-in of the measured and estimated X position

Inman, 2000). In the simulation, the measurement noise is
modelled as Gaussian white noise, and the simulation time
step was 0.1 sec. The ship was commanded to follow a
specified trajectory at low speed. The X position of the ship
is presented in Fig. 4. The dotted line represents the actual
position of the ship, and the solid line represents the
estimate of the X position. As it can be seem, the estimated
value from the observer converges to the actual value in
short time. A zoom-in of the part of the X position is
shown in Fig. 5 to verify the wave filtering performance of
the observer. Again the dotted line is the actual state and
the solid line is the estimate, and the low frequency
estimate is successfully obtained. Feeding back this low
frequency estimate to the controller prevents excessive wear
of the actuator and fuel consumption as discussed in the
previous section In Fig. 6, the estimate of the surge velocity
is shown, and an excellent linear velocity estimate is clearly
seen. The bias estimate is illustrated in Fig. 7, and this bias
estimate can be used as a feedforward control
Finally, the X and Y position tracking performance of the
DP ship is shown in Fig. 8. The solid line represents the

action.
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Fig. 6 Actual (solid) and estimated (dotted) surge velocity of
the DP ship
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Fig. 8 Comparison of X, Y position tracking of the DP ship
with the proposed observer (solid) and the conventional
observer (dotted)

tracking performance of the controller with the proposed
observer, and an excellent tracking performance can be seen.
The dotted line represents the tracking performance using
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the same controller but the observer without the
discontinuous term, and as shown, the ship fails to follow
the commanded position and drifts away. This demonstrates

the robustness of the proposed observer.

4. Conclusion

In this study, a robust nonlinear observer is derived for
dynamic positioning of ships. This nonlinear observer has a
special structure with a discontinuous term. In particular,
the nonlinear observer has a desirable robustness feature
against modeling errors and disturbances. The nonlinear
observer provides estimates of linear velocities and bias of
ships, and it also provides filtering of high frequency wave
frequency motion. No linearization of the kinematic equation
is necessary using the nonlinear observer resulting in a
fewer number of tuning parameters compared to that of the
Kalman filter. An output feedback controller is derived
using the back stepping technique based on the proposed
observer. With the given nonlinear observer, backstepping is
applied to a new system, in which the equations of
unmeasured states have been replaced by the corresponding
equations of their estimates from the observer. At each step
of the observation
disturbances and accounted for using nonlinear damping,
This improved nonlinear observer technique in combination

procedure, errors are treated as

with advanced nonlinear control techniques will provide
better performance of dynamic positioning of ship in real
sea environment.
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Appendix

For the computer simulation, the following parameters
were used.

[ 5.31226 0 0 ]
M= 0 8.2831H 0
0 0 3.74549 (A1)
5.0242e4 0 0
D= 0 2.7229¢5 —4.3933¢b
0 —4.3933¢6  4.1894€8
The values for the bias time constants were selected as
1000 0O 0
T=| 0 1000 0 (A2)
0 0 10000

and the dominant wave frequencies and the damping
coefficients were

w,=0.8976,¢,=0.1

corresponding to a wave period of 7.0 (s) in surge, sway
and yaw. The notch filter parameters were chosen as
{y=1.0and w ;=1.1.

The values for the controller gains were

(A3)

[—2.2059 0 0
0 —2.205 0
g=| 0 0 —2.2059
1.6157 0 0
0 16157 0
0 0 L6157
1.1 0 0 0.1 0 0
Hy=| 0 1.1 o],ngleﬁx 0 0.1 0]
0 0 L1 0 0 100
0.1 0 0
H=1&%| 0 0.1 0] (A4)
0 0 100
100 0 0 100 0
K=|0 100 0 lom 0
0 0 100 0 0 0.01

and the values for the observer gains were chosen as

0.1 0 0

0 0.1 Ol,Cz:{O 0.1
0 0 0.1 0
d=10,dy=10,d3=1,d,=1,ds=

Ci= } (A5)
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