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Cubic Equations in General Saddlepoint Approximations

Young-Hoon Leel)

Abstract

This paper discusses cubic equations in general saddlepoint approximations. Exact
roots are found for various cases by trigonometric identities, the root which is
appropriate for the general saddlepoint approximations is selected and discussed, and
the defective cases in which the general saddlepoint approximations cannot be used
are found.
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1. Introduction

For the approximation to the density f, of some statistic V,(X,,..,X,), where
Xy, ...,X, are = independent identically distributed (iid) random variables with the

underlying density £, usually asymptotic theory based on the central limit theorem is used.
But very often the central limit theorem requires (very) large sample size for a good
approximation. Moreover, these approximations tend to be inaccurate in the tails of the
distribution. The Edgeworth expansion can be used to increase the accuracy of the
approximation to the density f,. In general, the Edgeworth expansion provides a good

approximation in the center of the density, but it can be inaccurate in the tails when the
sample size is moderate to small. Saddlepoint asymptotic techniques overcome this problem
and give a good approximation even when the sample size is small. The first few terms (or
even just the leading term) often give very accurate approximations in the far tails of the
distribution even for very small sample sizes. One Empirical reason for this is that saddlepoint
approximations are density-like objects and do not show the polynomial-like waves exhibited
by Edgeworth approximations.

Saddlepoint approximations were first introduced into statistics by Daniels (1954). Daniels

(1954) used saddlepoint techniques to derive a very accurate approximation to f, when V),
is the mean of Xj,..., X, After Daniel's (1954) paper, saddlepoint techniques were applied to

several types of problems. For a general review, see Reid (1988).
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Saddlepoint approximations to the tail probability or cumulative distribution function of the
sample mean were derived by Lugannani and Rice (1980) and Daniels (1987). The
approximations given by them are very accurate.

Easton and Ronchetti (1986) derived a saddlepoint approximation for the density f, of a
general statistic  V,(X,,...,X,). The saddlepoint approximation utilizes the cumulant
generating function of V,, but in general it is unknown. Easton and Ronchetti (1986)

approximated the cumulant generating function of V, using the first four cumulants of V,.

Combining the methods of Easton and Ronchetti (1986) and Daniels (1987), Na (1998)
derived a saddlepoint approximation for the cumulative distribution function of V.

The general saddlepoint approximations by Easton and Ronchetti (1986) and Na (1998)
require the solution of cubic equations if the cumulant generating function of V, is
approximated using the first four cumulants of V,. In addition, the existence and selection of
the root which is appropriate for the general saddlepoint approximations should be checked.
But Easton and Ronchetti (1986) and Na (1998) do not give a detailed explanation of these
points.

This paper discusses cubic equations in general saddlepoint approximations. Exact roots are
found by trigonometric identities. So the numerical solution of cubic equations is not
necessary. The existence and selection of the root which is appropriate for the general
saddlepoint approximations are examined. In Section 2, general saddlepoint approximations to
densities and cumulative distribution functions are introduced and the necessity of solving
cubic equations is explained. In Section 3, exact roots are found for various cases, the
selection of the appropriate root for the saddlepoint approximations is discussed, and the
defective cases in which the general saddlepoint approximations cannot be used are found. A
conclusion is given in Section 4.

2. General Saddlepoint approximations

Easton and Ronchetti (1986) derived the following saddlepoint approximation for the density

f. of a general statistic V,, by applying the saddlepoint technique to the Fourier inversion of

the characteristic function of V,,.

1) =[ gy | ool R )= toxH1+ 00~} 0

where { is determined as a solution to
R, (t)=x, 2)
R, (t,) and R,’(t,) are the first two derivatives of R,(¢)=K,(nt)/n at t;, and K, is

the cumulant generating function of V,.
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Using the method of Daniels (1987) for the saddlepoint approximation to the cumulative
distribution function of a sample mean, Na (1998) obtained the following approximation to the

cumulative distribution function of V,,.

0(w) + p(w) L =L +0(™),  x#E(V,)
Pr{V,<x}= 1 RO
2 ¢/2a(R,”(0)

where ¢( +) and @( - ) are the density and cumulative distribution function of the standard

(3

{1+ 0(n™¥)}, x=E(V,)

normal distribution, respectively, R 2(0) is the third derivative of R,(#) at 0,
w=[2n{tyx— R,(t,)}1"* sgn (4,),

and
E=t{nR, ({)}"
The problem in (1) and (3) is that in general K, is unknown. Easton and Ronchetti (1986)
approximated K, by

k

3n L3 k4n 4
3! r°+

T

where ky,, ky,, k3., and k4, are (approximations to) the mean, the variance, and the third

K(t)=k1nt+%t2+

and fourth cumulants of V,. Replacing K, by K, in (1), f, is approximated by
7a) =[5 exn [ n{ Bit)
xX)= ==, e ny R, () —fhx
n [ Zﬂ‘R,, (fo)] XD[ { 0 0 }]

where {; is determined as a solution to
R, (t)=x, (4)
R, (ty) and R, ’(t,) are the first two derivatives of R,(t)=K,(nt)/n at t,. Na (1998)
also replaced K, by K, in (3) and obtained similar result for the cumulative distribution
function of V.
Since K, is convex, the solution of the equation (2) is unique and real. But the cubic

equation (4) can have multiple real solutions and only the solution £, with R\;,"(to) >0 can

be used for the saddlepoint approximations. In the next section, the exact solutions of the
cubic equation (4) are given, the selection of the appropriate root for the general saddlepoint

approximations is discussed, and the defective cases in which the solution £, with
R, ’(t,) >0 does not exist are found. The formula

(a+b)°—3abla+b)=a>+1b

or

@+ b+ A= 3abc = (a+ b+ c &+ B>+ *— ab— be— ca)
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can be used to solve cubic equations. But it is tedious to find exact roots of a cubic equation
by these formulae. Instead, the use of trigonometric identities is easier and straightforward.
Birkhoff and Mac Lane (1977) gives a brief explanation of cubic equations.

3. Cubic Equations

Let g(¢t)=R, (t)—x. Then t, is determined as a solution to g(¢)=0 and R, ()>0
is equivalent to "g’(f#) >0. The function g(¢) is written as
_ P 3, o Ran 2, oo k%
g(t)= 3 (mt) +3k4n(nt) +6k4n(nt)+6 kr }
Now, by making the substitution #nt=y—(ks,/ks,), g(t) is rewritten as

ks Ry ks, 3 k3
g()=37 0 +py—a)=7; {(nt+—kj—n) +1>("f+ k4,,)_"]

where

and

Case 1: p=¢=0

The cubic equation g(¢t)=0 has a triple root #,=-—ks,/(nks,) and g'(#) =0. In this
case, the solution #, with R, ’(#)>0 does not exist, and so the saddlepoint approximations
by Easton and Ronchetti (1986) and Na (1998) cannot be used.

Case 2 p=0 and ¢+0
The cubic equation g(#)=0 has two conjugate imaginary roots
n~1{gPe 2xif3 _ ksl kan)), n—l{ql/BedfriB_ (knl Fun))
where 7=V —1, and a real root
ty=n""{q"® = (kyn/bsn)}. (5)
The value g’'(#4) is positive (negative) if £, is positive (negative). Hence, if Ay, is
positive, (5) is the solution #, with R, "(#)>0. If k, is negative, the solution # with

E,"(to) >0 does not exist, and so the saddlepoint approximations by Easton and Ronchetti
(1986) and Na (1998) cannot be used.
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If p+0, set y=2(1p1/3)"2z. Then

312
g(t)= 1;4," Z(JgL) {423 +3 sgn(p)z— C}

where

z=%(—3—)”2(nt+ k"”) and c=i(—|i—|)3/2.

Case 3: p>0
The function g(¢) is strictly increasing (decreasing) if k4, is positive (negative). The
cubic equation g(¢)=0 is equivalent to 4z°+3z = C. Using the identity
4sinh3y + 3 sinh» = sinh3u = sinh (3u — 2/77)

for any integer [/, the solutions are

T 5 U | r | . 1 ., -1\, 2%
z= smh(3 sinh C)cos 3 +zcosh<3 sinh C)sm 3 -
The real root is
5 13 > -1/
zo=sinh(% Sinh_lc)= (C+VC*+1) 2(c+\/ c+1)
Hence, the cubic equation g(#)=0 has two conjugate imaginary roots and a real root

ty=n" 1 {2(/3) 20 — (kanl ksn)}. 6)
The value g’'(f#) is positive (negative) if k4, is positive (negative). Hence, if &y, is
positive, (6) is the solution f, with R, (#)>0. If ky, is negative, the solution f; with

R, (#)>0 does not exist, and so the saddlepoint approximations by Easton and Ronchetti
(1986) and Na (1998) cannot be used.

If »<0, g(t) has a local maximum and a local minimum. And the cubic equation

g($)=0 is equivalent to 4z°—3z =C.

Case 4 : p<0 and C>1
Both the local maximum and minimum values of g(¢) are negative (positive) if £k, is
positive (negative). Using the identity
4cosh®s — 3 coshu = cosh3u = cosh(3u —2/x7) (7

for any integer /[, the solutions of the cubic equation 4z —3z = C are

z2 = cosh(% cosh 'IC)coszé—”-F z'sinh(% cosh_IC)sin 2§7r .

The real root is
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[ 2 1/3 f 2 —1/3
zo=cosh(%cosh—lC)= (C+VCi-1) ;(C+ c-1) :

Hence, the cubic equation g(#)=0 has two conjugate imaginary roots and a real root
ty=n""{2(— p/3)22) — (kgn/ b))} ®)

The value g'(f) is positive (negative) if k4, is positive (negative). Hence, if Ay, is

positive, (8) is the solution ¢ with R, '(#)>0. If ky, is negative, the solution # with

R, ’(t)>0 does not exist, and so the saddlepoint approximations by Easton and Ronchetti
(1986) and Na (1998) cannot be used.

Case 5: p<0 and C<K—1

Both the local maximum and minimum values of g(#) are positive (negative) if ky, is
positive  (negative). @ And the cubic equation g(t)=0 is equivalent to
4(—2)3~3(—z) =— C. Using the identity (7), the solutions are

2lx
3

—isinh(% cosh ~1(— C))sin%

2= — cosh(% cosh “}(— C))cos

The real root is

_ [ ~2 1/3 _ / 2 _ -1/3
zo=—cosh(%cosh'l(~C))=—( C+VC—1) ;( C+VCi=1) i

Hence, the cubic equation g(¢)=0 has two conjugate imaginary roots and a real root
to=n"1{2(— p/3) 22y — (kyn/ksn)}. (9)

The value g’'(#) is positive (negative) if k;, is positive (negative). Hence, if 4k, is

positive, (9) is the solution #, with R, (#)>0. If ky, is negative, the solution # with

R\:,"(to) >0 does not exist, and so the saddlepoint approximations by Easton and Ronchetti
(1986) and Na (1998) cannot be used.

Case 6 : p<0 and |C|<1
The cubic equation g(#)=0 has three distinct real roots. Using the identity
4cos*u—3cosu = cos3u,

the three distinct real roots of the cubic equation 4z°—3z = C are

zZ = —% cos(L cos _IC) - V3 sin(l cos "1C)

3 2 3
2y = ——%* cos(% cos _IC) + 12_3— sin(%— cos _IC)

and
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z23 = cos(% cos —1C>.

Since 0<cos ~!C<x, it follows that

0<% cos“‘C(*gE(%—%*cos"lc<%<—237£+%*cos_lc<7r,

and hence

1)%)%)@)‘%)&)‘L

Let ¢t;= n_l{Z(——p/S)l/zz,-—(k3n/k4n)}, 7=1,2,3. Then # <t < t; are the three distinct real
roots of the cubic equation g(¢)=0.

If k4, is positive, g'(#) and g'(#3) are positive, and g'(#;) is negative. The smaller the
absolute value of ¢ is, the more accurate the approximation of K, by K, is. For this
reason, if |#|<|#l, #; should be chosen as the #, for the general saddlepoint approximations,
and if |£3]<|#], ;3 should be chosen as the #; for the general saddlepoint approximations.

If Ay, is negative, g'(#) and g'(#;) are negative, and g’'(#) is positive. So # is the
solution f, with R "(#)>0.

Case 7: p<0 and C=1

In this case, g(t) is reduced to

g(t)= %2<J)3/2(z— 1)(2z+1)2.

3
Hence, the cubic equation g(#)=0 has a double root and a single real root
ty=n"{2(— p/3) % — (kyn/ bun)}. (10)

The value g’'(#) is positive (negative) if ky, is positive (negative). Hence, if Ay, is
positive, (10) is the solution #; with R, (#)>0. If ks, is negative, the solution £, with

E"(to) >0 does not exist, and so the saddlepoint approximations by Easton and Ronchetti
(1986) and Na (1998) cannot be used.

Case 8: p<) and C=—1

In this case, g(#) is reduced to

gu)zkmzpiﬁﬁyaz+nwz—n%

3! 3
Hence, the cubic equation g(#)=0 has a double root and a single real root
to=n""{—2(— 5/3)"" = (k3a/kin)}. (11)

The value g'(#;) is positive (negative) if k,, is positive (negative). Hence, if ky, is
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positive, (11) is the solution ¢, with R, ’(#)>0. If k,, is negative, the solution £, with

R\;”(to) >0 does not exist, and so the saddlepoint approximations by Easton and Ronchetti
(1986) and Na (1998) cannot be used.

To summarize, if Ay, is positive, the solution f, with R, "(%)>0 always exists except
the case p=g=0. On the other hand, if k,, is negative, the solution #, with R, '(#)>0

exists only when p<0 and [C|<1. Note that the sign of ks, is equal to that of KAy,/ks

the kurtosis of the distribution of V,,.

4. Conclusion

Cubic equations in general saddlepoint approximations were discussed. Exact roots were
found for various cases and so numerical methods are not necessary for the solution of cubic
equations. The selection of the appropriate root for the general saddlepoint approximations was
also discussed. The defective cases in which the saddlepoint approximations by Easton and

Ronchetti (1986) and Na (1998) cannot be used were found. In general K, is unknown, and

so the approximation of K, by K, proposed by Easton and Ronchetti (1986) is useful

although there are some defective cases. Accordingly, the saddlepoint approximations by
Easton and Ronchetti (1986) and Na (1998) are available except some defective cases. For the

defective cases, other methods of estimating or approximating K, should be used.
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