Abstract
An n-point design is maximal fan if all the models with n-terms satisfying the divisibility condition are estimable. Such designs tend to be space filling and look very similar to the ″Latin-hypercube″ designs used in computer experiments. Caboara, Pistone, Riccomago and Wynn (1997) conjectured that a maximal fan design on an integer grid exists for any n and m, where m is the number of factors. In this paper we examine the relationship between maximal fan design and latin-hypercube to give a partial solution for the conjecture.